Your browser doesn't support javascript.
loading
Long-range information and physicality constraints improve predicted protein contact maps.
Martin, Alberto J M; Baù, Davide; Vullo, Alessandro; Walsh, Ian; Pollastri, Gianluca.
Afiliación
  • Martin AJ; Complex and Adaptive Systems Lab, School of Computer Science and Informatics, University College Dublin, Belfield, Dublin 4, Ireland. albertoj@ucd.ie
J Bioinform Comput Biol ; 6(5): 1001-20, 2008 Oct.
Article en En | MEDLINE | ID: mdl-18942163
Protein topology representations such as residue contact maps are an important intermediate step towards ab initio prediction of protein structure, but the problem of predicting reliable contact maps is far from solved. One of the main pitfalls of existing contact map predictors is that they generally predict unphysical maps, i.e. maps that cannot be embedded into three-dimensional structures or, at best, violate a number of basic constraints observed in real protein structures, such as the maximum number of contacts for a residue. Here, we focus on the problem of learning to predict more "physical" contact maps. We do so by first predicting contact maps through a traditional system (XXStout), and then filtering these maps by an ensemble of artificial neural networks. The filter is provided as input not only the bare predicted map, but also a number of global or long-range features extracted from it. In a rigorous cross-validation test, we show that the filter greatly improves the predicted maps it is input. CASP7 results, on which we report here, corroborate this finding. Importantly, since the approach we present here is fully modular, it may be beneficial to any other ab initio contact map predictor.
Asunto(s)
Buscar en Google
Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Algoritmos / Reconocimiento de Normas Patrones Automatizadas / Proteínas / Redes Neurales de la Computación / Mapeo de Interacción de Proteínas / Modelos Químicos Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: J Bioinform Comput Biol Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2008 Tipo del documento: Article País de afiliación: Irlanda
Buscar en Google
Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Algoritmos / Reconocimiento de Normas Patrones Automatizadas / Proteínas / Redes Neurales de la Computación / Mapeo de Interacción de Proteínas / Modelos Químicos Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: J Bioinform Comput Biol Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2008 Tipo del documento: Article País de afiliación: Irlanda