Your browser doesn't support javascript.
loading
Phenotypic expression of maternally inherited deafness is affected by RNA modification and cytoplasmic ribosomal proteins.
Bykhovskaya, Yelena; Mengesha, Emebet; Fischel-Ghodsian, Nathan.
Afiliación
  • Bykhovskaya Y; Medical Genetics Institute, Ahmanson Department of Pediatrics, Steven Spielberg Pediatric Research Center, Cedars-Sinai Medical Center and David Geffen School of Medicine at UCLA, Los Angeles, CA 90048, USA.
Mol Genet Metab ; 97(4): 297-304, 2009 Aug.
Article en En | MEDLINE | ID: mdl-19482502
ABSTRACT
The homoplasmic mitochondrial A1555G mutation in the 12S rRNA gene leads to a mitochondrial translation disorder associated with deafness. The absence of disease in non-cochlear tissues in all patients, and in the cochlea in some patients, is not well understood. We used a system-based approach, including whole genome expression and biological function analysis, to elucidate the pathways underlying tissue specificity and clinical severity of this condition. Levels of over 48K RNA transcripts from EBV-transformed lymphoblasts of deaf and hearing individuals with the A1555G mutation and controls were obtained. Differentially expressed transcripts were functionally grouped using gene set enrichment analysis. Over 50 RNA binding proteins were differentially expressed between deaf and hearing individuals with the A1555G mutation (P-value of 2.56E-7), confirming previous genetic data implicating this pathway in the determination of the severity of hearing loss. Unexpectedly, the majority of cytoplasmic ribosomal genes were up-regulated in a coordinated fashion in individuals with the A1555G mutation versus controls (P-value of 3.91E-135). This finding was verified through real time RT-PCR, and through measuring of protein levels by flow cytometry. Analysis of expression levels of other differentially expressed genes suggests that this coordinated over-expression of cytoplasmic ribosomal proteins might occur through the Myc/Max pathway. We propose that expression levels of RNA binding proteins help determine the severity of the cochlear phenotype, and that coordinated up-regulation of the cytoplasmic translation apparatus operates as a compensation mechanism in unaffected tissues of patients with maternal deafness associated with the A1555G mutation.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Proteínas Ribosómicas / ARN Ribosómico / Sordera / Pérdida Auditiva Límite: Female / Humans Idioma: En Revista: Mol Genet Metab Asunto de la revista: BIOLOGIA MOLECULAR / BIOQUIMICA / METABOLISMO Año: 2009 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Proteínas Ribosómicas / ARN Ribosómico / Sordera / Pérdida Auditiva Límite: Female / Humans Idioma: En Revista: Mol Genet Metab Asunto de la revista: BIOLOGIA MOLECULAR / BIOQUIMICA / METABOLISMO Año: 2009 Tipo del documento: Article País de afiliación: Estados Unidos