Color purity in polymer electrochromic window devices on indium-tin oxide and single-walled carbon nanotube electrodes.
ACS Appl Mater Interfaces
; 1(10): 2288-97, 2009 Oct.
Article
en En
| MEDLINE
| ID: mdl-20355864
Dual polymer absorptive/transmissive electrochromic (EC) window devices have been assembled using the solution-processable and high-EC-contrast polymer PProDOT-(CH(2)OEtHx)(2) as the EC material, along with a non-color-changing electroactive polymer, poly(2,2,6,6-tetramethylpiperidinyloxy-4-yl methacrylate) (PTMA), as the counter electrode material. Indium-tin oxide (ITO) and highly transmissive single-walled carbon nanotube (SWNT) film coated glass electrodes are used as electrode substrates. The use of the EC/non-color-changing polymer combination allowed us to construct window devices that rapidly switch between magenta and highly transmissive (>95% T for ITO and approximately 79% T for SWNT) states with large optical modulation (>71% DeltaT for ITO and 66% DeltaT for SWNT). The devices showed effective coloration and bleaching: the lightness parameter (L*) changing from 67 to 95 for ITO (approximately 50-92 for SWNT), essentially reaching a diffuse white upon oxidation. The color modulates from highly pure magenta with a* = 28 (red hue) and b* = -28 (blue chroma) for ITO (a* = 40 and b* = -36 for SWNT) to nearly colorless with a* = 1 and b* = -1 for ITO (a* = -2 and b* = -3 for SWNT) devices. Increasing the switching voltage from 2.55 V up to 3.5 V resulted in faster SWNT-based window device performance.
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Idioma:
En
Revista:
ACS Appl Mater Interfaces
Asunto de la revista:
BIOTECNOLOGIA
/
ENGENHARIA BIOMEDICA
Año:
2009
Tipo del documento:
Article
País de afiliación:
Estados Unidos