A patient-adaptive profiling scheme for ECG beat classification.
IEEE Trans Inf Technol Biomed
; 14(5): 1153-65, 2010 Sep.
Article
en En
| MEDLINE
| ID: mdl-20813624
Recent trends in clinical and telemedicine applications highly demand automation in electrocardiogram (ECG) signal processing and heart beat classification. A patient-adaptive cardiac profiling scheme using repetition-detection concept is proposed in this paper. We first employ an efficient wavelet-based beat-detection mechanism to extract precise fiducial ECG points. Then, we implement a novel local ECG beat classifier to profile each patient's normal cardiac behavior. ECG morphologies vary from person to person and even for each person, it can vary over time depending on the person's physical condition and/or environment. Having such profile is essential for various diagnosis (e.g., arrhythmia) purposes. One application of such profiling scheme is to automatically raise an early warning flag for the abnormal cardiac behavior of any individual. Our extensive experimental results on the MIT-BIH arrhythmia database show that our technique can detect the beats with 99.59% accuracy and can identify abnormalities with a high classification accuracy of 97.42%.
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Procesamiento de Señales Asistido por Computador
/
Electrocardiografía Ambulatoria
Límite:
Humans
Idioma:
En
Revista:
IEEE Trans Inf Technol Biomed
Asunto de la revista:
INFORMATICA MEDICA
Año:
2010
Tipo del documento:
Article
País de afiliación:
Estados Unidos