LPS-induced decrease in intracellular labile zinc, [Zn]i, contributes to apoptosis in cultured sheep pulmonary artery endothelial cells.
Am J Physiol Lung Cell Mol Physiol
; 300(4): L624-32, 2011 Apr.
Article
en En
| MEDLINE
| ID: mdl-21239534
A role in signal transduction for a vanishingly small labile pool of intracellular zinc ([Zn](i)) has been inferred by the sensitivity of various physiological pathways to zinc chelators such as N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) and/or associations with changes in nonprotein-bound zinc-sensitive fluorophores. Although we (44) reported that LPS-induced apoptosis in cultured sheep pulmonary artery endothelial cells (SPAEC) was exacerbated by TPEN, 1) we did not detect acute (30 min) changes in [Zn](i), and 2) it is unclear from other reports whether LPS increases or decreases [Zn](i) and whether elevations or decreases in [Zn](i) are associated with cell death and/or apoptosis. In the present study, we used both chemical (FluoZin-3 via live cell epifluorescence microscopy and fluorescence-activated cell sorting) and genetic (luciferase activity of a chimeric reporter encoding zinc-sensitive metal-response element and changes in steady-state mRNA of zinc importer, SLC39A14 or ZIP14) techniques to show that LPS caused a delayed time-dependent (2-4 h) decrease in [Zn](i) in SPAEC. A contributory role of decreases in [Zn](i) in LPS-induced apoptosis (as determined by caspase-3/7 activation, annexin-V binding, and cytochrome c release) in SPAECs was revealed by mimicking the effect of LPS with the zinc chelator, TPEN, and inhibiting LPS- (or TPEN)-induced apoptosis with exogenous zinc. Collectively, these are the first data demonstrating a signaling role for decrease in [Zn](i) in pulmonary endothelial cells and suggest that endogenous levels of labile zinc may affect sensitivity of pulmonary endothelium to the important and complex proapoptotic stimulus of LPS.
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Arteria Pulmonar
/
Zinc
/
Lipopolisacáridos
/
Apoptosis
/
Espacio Intracelular
/
Células Endoteliales
Límite:
Animals
Idioma:
En
Revista:
Am J Physiol Lung Cell Mol Physiol
Asunto de la revista:
BIOLOGIA MOLECULAR
/
FISIOLOGIA
Año:
2011
Tipo del documento:
Article
País de afiliación:
Estados Unidos