Hypoxia and HIF-1 suppress SERCA2a expression in embryonic cardiac myocytes through two interdependent hypoxia response elements.
J Mol Cell Cardiol
; 50(6): 1008-16, 2011 Jun.
Article
en En
| MEDLINE
| ID: mdl-21382378
Sarcoplasmic reticulum (SR) Ca(2+)-ATPase (SERCA2a) is an essential component of cardiomyocyte excitation-contraction (EC)-coupling. Suppression of SERCA2a expression induces contractile dysfunction and has been reported in various forms of ischemic cardiac disease as well as in hypobaric hypoxia. The present study investigated whether SERCA2a expression is regulated by hypoxia in embryonic mouse cardiomyocytes and explored the underlying mechanism. We show that in cultured embryonic cardiomyocytes hypoxia (1% O(2)) induce time-dependent downregulation of SERCA2a expression. This mechanism manifested as specific changes in cardiac myocyte calcium signals induced by reduced expression and activity of SERCA2a. Chemical activation of hypoxia-inducible factor-1 (HIF-1) by DFO or overexpression of normoxia-stabile HIF-1α (HIF-1α/VP16) suppressed endogenous SERCA2a expression as well as the activity of the SERCA2a-promoter-luciferase reporter. Analysis of the SERCA2a promoter found two putative HIF-1 binding HRE-sites. Site-specific promoter mutagenesis revealed that co-operative HIF-1 binding to both of these hypoxia response elements on the SERCA2a promoter is required for expressional suppression. This mechanism establishes a link between oxygen supply and calcium activity in embryonic cardiac myocytes that is exploited in cardiac development, and further may offer a possible explanation for the functional depression of SERCA2a seen in ischemic and hypoxic myocardium.
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Regulación del Desarrollo de la Expresión Génica
/
Elementos de Respuesta
/
Miocitos Cardíacos
/
Factor 1 Inducible por Hipoxia
/
ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico
Tipo de estudio:
Prognostic_studies
Límite:
Animals
Idioma:
En
Revista:
J Mol Cell Cardiol
Año:
2011
Tipo del documento:
Article
País de afiliación:
Finlandia