Structure and expression of the rat inositol 1,4,5-trisphosphate receptor.
J Biol Chem
; 265(21): 12679-85, 1990 Jul 25.
Article
en En
| MEDLINE
| ID: mdl-2165071
The complete primary structure of the inositol 1,4,5-trisphosphate receptor from rat brain was elucidated using a series of overlapping cDNA clones. Two different sets of clones that either contain or lack a 45-nucleotide sequence in the amino-terminal third of the protein were isolated, suggesting a differential splicing event that results in the biosynthesis of either a 2734- or 2749-amino acid receptor protein. Hydrophobicity analysis demonstrates the presence of a cluster of hydrophobic sequences in the carboxyl-terminal third of the protein that probably comprise eight transmembrane regions and that may form the calcium channel intrinsic to the receptor. The receptor was universally expressed at low levels in all tissues and cultured cells tested. Transfection of a full-length expression construct of the inositol 1,4,5-trisphosphate receptor into COS cells resulted in the biosynthesis of a 260-kDa protein that bound inositol 1,4,5-trisphosphate and formed high molecular weight complexes similar to the native receptor as analyzed by sucrose gradient centrifugations. On the other hand, the protein product synthesized by a mutant receptor construct in which the amino-terminal 418 amino acids were deleted failed to bind inositol 1,4,5-trisphosphate. The mutant receptor still formed high molecular weight complexes, suggesting that it folded normally and that the amino-terminal sequences of the receptor are part of the ligand binding domain.
Buscar en Google
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Canales de Calcio
/
Inositol 1,4,5-Trifosfato
/
Receptores Citoplasmáticos y Nucleares
/
Receptores de Superficie Celular
Límite:
Animals
Idioma:
En
Revista:
J Biol Chem
Año:
1990
Tipo del documento:
Article