Your browser doesn't support javascript.
loading
Metabolic switches and adaptations deduced from the proteomes of Streptomyces coelicolor wild type and phoP mutant grown in batch culture.
Mol Cell Proteomics ; 11(2): M111.013797, 2012 Feb.
Article en En | MEDLINE | ID: mdl-22147733
ABSTRACT
Bacteria in the genus Streptomyces are soil-dwelling oligotrophs and important producers of secondary metabolites. Previously, we showed that global messenger RNA expression was subject to a series of metabolic and regulatory switches during the lifetime of a fermentor batch culture of Streptomyces coelicolor M145. Here we analyze the proteome from eight time points from the same fermentor culture and, because phosphate availability is an important regulator of secondary metabolite production, compare this to the proteome of a similar time course from an S. coelicolor mutant, INB201 (ΔphoP), defective in the control of phosphate utilization. The proteomes provide a detailed view of enzymes involved in central carbon and nitrogen metabolism. Trends in protein expression over the time courses were deduced from a protein abundance index, which also revealed the importance of stress pathway proteins in both cultures. As expected, the ΔphoP mutant was deficient in expression of PhoP-dependent genes, and several putatively compensatory metabolic and regulatory pathways for phosphate scavenging were detected. Notably there is a succession of switches that coordinately induce the production of enzymes for five different secondary metabolite biosynthesis pathways over the course of the batch cultures.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Fosfatos / Proteínas Bacterianas / Streptomyces coelicolor / Aclimatación / Mutación Idioma: En Revista: Mol Cell Proteomics Asunto de la revista: BIOLOGIA MOLECULAR / BIOQUIMICA Año: 2012 Tipo del documento: Article País de afiliación: Reino Unido

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Fosfatos / Proteínas Bacterianas / Streptomyces coelicolor / Aclimatación / Mutación Idioma: En Revista: Mol Cell Proteomics Asunto de la revista: BIOLOGIA MOLECULAR / BIOQUIMICA Año: 2012 Tipo del documento: Article País de afiliación: Reino Unido