Your browser doesn't support javascript.
loading
Efficient inhomogeneity compensation using fuzzy c-means clustering models.
Szilágyi, László; Szilágyi, Sándor M; Benyó, Balázs.
Afiliación
  • Szilágyi L; Faculty of Technical and Human Sciences, Sapientia University of Transylvania, Soseaua Sighisoarei 1/C, 540485 Tîrgu Mures, Romania.
Comput Methods Programs Biomed ; 108(1): 80-9, 2012 Oct.
Article en En | MEDLINE | ID: mdl-22405524
Intensity inhomogeneity or intensity non-uniformity (INU) is an undesired phenomenon that represents the main obstacle for magnetic resonance (MR) image segmentation and registration methods. Various techniques have been proposed to eliminate or compensate the INU, most of which are embedded into classification or clustering algorithms, they generally have difficulties when INU reaches high amplitudes and usually suffer from high computational load. This study reformulates the design of c-means clustering based INU compensation techniques by identifying and separating those globally working computationally costly operations that can be applied to gray intensity levels instead of individual pixels. The theoretical assumptions are demonstrated using the fuzzy c-means algorithm, but the proposed modification is compatible with a various range of c-means clustering based INU compensation and MR image segmentation algorithms. Experiments carried out using synthetic phantoms and real MR images indicate that the proposed approach produces practically the same segmentation accuracy as the conventional formulation, but 20-30 times faster.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Lógica Difusa / Modelos Teóricos Límite: Humans Idioma: En Revista: Comput Methods Programs Biomed Asunto de la revista: INFORMATICA MEDICA Año: 2012 Tipo del documento: Article País de afiliación: Rumanía

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Lógica Difusa / Modelos Teóricos Límite: Humans Idioma: En Revista: Comput Methods Programs Biomed Asunto de la revista: INFORMATICA MEDICA Año: 2012 Tipo del documento: Article País de afiliación: Rumanía