Your browser doesn't support javascript.
loading
Emergent criticality through adaptive information processing in boolean networks.
Goudarzi, Alireza; Teuscher, Christof; Gulbahce, Natali; Rohlf, Thimo.
Afiliación
  • Goudarzi A; Portland State University, 1900 4th SW Avenue, Portland, Oregon 97206, USA.
Phys Rev Lett ; 108(12): 128702, 2012 Mar 23.
Article en En | MEDLINE | ID: mdl-22540628
We study information processing in populations of boolean networks with evolving connectivity and systematically explore the interplay between the learning capability, robustness, the network topology, and the task complexity. We solve a long-standing open question and find computationally that, for large system sizes N, adaptive information processing drives the networks to a critical connectivity K(c)=2. For finite size networks, the connectivity approaches the critical value with a power law of the system size N. We show that network learning and generalization are optimized near criticality, given that the task complexity and the amount of information provided surpass threshold values. Both random and evolved networks exhibit maximal topological diversity near K(c). We hypothesize that this diversity supports efficient exploration and robustness of solutions. Also reflected in our observation is that the variance of the fitness values is maximal in critical network populations. Finally, we discuss implications of our results for determining the optimal topology of adaptive dynamical networks that solve computational tasks.
Asunto(s)
Buscar en Google
Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Procesamiento Automatizado de Datos Idioma: En Revista: Phys Rev Lett Año: 2012 Tipo del documento: Article País de afiliación: Estados Unidos
Buscar en Google
Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Procesamiento Automatizado de Datos Idioma: En Revista: Phys Rev Lett Año: 2012 Tipo del documento: Article País de afiliación: Estados Unidos