Multifunctional Eu3+/Gd3+ dual-doped calcium phosphate vesicle-like nanospheres for sustained drug release and imaging.
Biomaterials
; 33(27): 6447-55, 2012 Sep.
Article
en En
| MEDLINE
| ID: mdl-22721725
A facile room-temperature solution method is reported for the preparation of multifunctional Eu(3+) and Gd(3+) dual-doped calcium phosphate (CaP) (Eu(3+)/Gd(3+)-CaP) vesicle-like nanospheres in the presence of an amphiphilic block copolymer polylactide-block-monomethoxy(polyethyleneglycol) (PLA-mPEG). The photoluminescent (PL) and magnetic multifunctions of CaP vesicle-like nanospheres are realized by dual-doping with Eu(3+)/Gd(3+) ions. Under the excitation at 393 nm, Eu(3+)/Gd(3+)-CaP vesicle-like nanospheres exhibit a strong near-infrared (NIR) emission at 700 nm, and the PL intensity can be adjusted by varying Eu(3+) and Gd(3+) concentrations. Furthermore, Eu(3+)/Gd(3+)-CaP vesicle-like nanospheres can be used as the drug nanocarrier and have a high drug loading capacity and ultralong sustained drug release using ibuprofen as a model drug. The drug release from the drug delivery system of Eu(3+)/Gd(3+)-CaP vesicle-like nanospheres can sustain for a very long period of time (more than 80 days). The as-prepared Eu(3+)/Gd(3+)-CaP vesicle-like nanospheres exhibit essentially inappreciable toxicity to the cells in vitro. The noninvasive visualization of nude mice with subcutaneous injection indicates that the Eu(3+)/Gd(3+)-CaP vesicle-like nanospheres are suitable for in vivo bio-imaging. In vivo imaging tests using the subcutaneous injection model of nude mice indicate that Eu(3+)/Gd(3+)-CaP vesicle-like nanospheres can be used as an imaging agent for the NIR luminescence imaging. Thus, the Eu(3+)/Gd(3+)-CaP vesicle-like nanospheres are promising for applications in the biomedical fields such as multifunctional drug delivery systems and tissue engineering scaffolds with bio-imaging guidance.
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Fosfatos de Calcio
/
Diagnóstico por Imagen
/
Preparaciones de Acción Retardada
/
Europio
/
Liposomas Unilamelares
/
Nanosferas
/
Gadolinio
Tipo de estudio:
Diagnostic_studies
Límite:
Animals
/
Humans
Idioma:
En
Revista:
Biomaterials
Año:
2012
Tipo del documento:
Article