Your browser doesn't support javascript.
loading
3-O-sulfated heparan sulfate recognized by the antibody HS4C3 contributes [corrected] to the differentiation of mouse embryonic stem cells via fas signaling.
Hirano, Kazumi; Sasaki, Norihiko; Ichimiya, Tomomi; Miura, Taichi; Van Kuppevelt, Toin H; Nishihara, Shoko.
Afiliación
  • Hirano K; Laboratory of Cell Biology, Department of Bioinformatics, Faculty of Engineering, Soka University, Hachioji, Tokyo, Japan.
PLoS One ; 7(8): e43440, 2012.
Article en En | MEDLINE | ID: mdl-22916262
ABSTRACT
Maintenance of self-renewal and pluripotency in mouse embryonic stem cells (mESCs) is regulated by the balance between several extrinsic signaling pathways. Recently, we demonstrated that heparan sulfate (HS) chains play important roles in the maintenance and differentiation of mESCs by regulating extrinsic signaling. Sulfated HS structures are modified by various sulfotransferases during development. However, the significance of specific HS structures during development remains unclear. Here, we show that 3-O-sulfated HS structures synthesized by HS 3-O-sulfotransferases (3OSTs) and recognized by the antibody HS4C3 increase during differentiation of mESCs. Furthermore, expression of Fas on the cell surface of the differentiated cells also increased. Overexpression of the HS4C3-binding epitope in mESCs induced apoptosis and spontaneous differentiation even in the presence of LIF and serum. These data showed that the HS4C3-binding epitope was required for differentiation of mESCs. Up-regulation of the HS4C3-binding epitope resulted in the recruitment of Fas from the cytoplasm to lipid rafts on the cell surface followed by activation of Fas signaling. Indeed, the HS4C3-binding epitope interacted with a region that included the heparin-binding domain (KLRRRVH) of Fas. Reduced self-renewal capability in cells overexpressing 3OST resulted from the degradation of Nanog by activated caspase-3, which is downstream of Fas signaling, and was rescued by the inhibition of Fas signaling. We also found that knockdown of 3OST and inhibition of Fas signaling reduced the potential for differentiation into the three germ layers during embryoid body formation. This is the first demonstration that activation of Fas signaling is mediated by an increase in the HS4C3-binding epitope and indicates a novel signaling pathway for differentiation in mESCs.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Receptor fas / Células Madre Embrionarias / Heparitina Sulfato Límite: Animals Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2012 Tipo del documento: Article País de afiliación: Japón

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Receptor fas / Células Madre Embrionarias / Heparitina Sulfato Límite: Animals Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2012 Tipo del documento: Article País de afiliación: Japón