Your browser doesn't support javascript.
loading
Molecular self-assembly at metal-electrolyte interfaces.
Phan, Thanh Hai; Wandelt, Klaus.
Afiliación
  • Phan TH; Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstr, 12, D-53115 Bonn, Germany. phan@pc.uni-bonn.de.
Int J Mol Sci ; 14(3): 4498-524, 2013 Feb 25.
Article en En | MEDLINE | ID: mdl-23439555
ABSTRACT
The self-assembly of molecular layers has become an important strategy in modern design of functional materials. However, in particular, large organic molecules may no longer be sufficiently volatile to be deposited by vapor deposition. In this case, deposition from solution may be a promising route; in ionic form, these molecules may even be soluble in water. In this contribution, we present and discuss results on the electrochemical deposition of viologen- and porphyrin molecules as well as their co-adsorption on chloride modified Cu(100) and Cu(111) single crystal electrode surfaces from aqueous acidic solutions. Using in situ techniques like cyclic voltametry and high resolution scanning tunneling microscopy, as well as ex-situ photoelectron spectroscopy data the highly ordered self-assembled organic layers are characterized with respect to their electrochemical behavior, lateral order and inner conformation as well as phase transitions thereof as a function of their redox-state and the symmetry of the substrate. As a result, detailed structure models are derived and are discussed in terms of the prevailing interactions.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Int J Mol Sci Año: 2013 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Int J Mol Sci Año: 2013 Tipo del documento: Article País de afiliación: Alemania