Your browser doesn't support javascript.
loading
Responses of Mn2+ speciation in Deinococcus radiodurans and Escherichia coli to γ-radiation by advanced paramagnetic resonance methods.
Sharma, Ajay; Gaidamakova, Elena K; Matrosova, Vera Y; Bennett, Brian; Daly, Michael J; Hoffman, Brian M.
Afiliación
  • Sharma A; Department of Chemistry, Northwestern University, Evanston, IL 60208, USA.
Proc Natl Acad Sci U S A ; 110(15): 5945-50, 2013 Apr 09.
Article en En | MEDLINE | ID: mdl-23536297
ABSTRACT
The remarkable ability of bacterium Deinococcus radiodurans to survive extreme doses of γ-rays (12,000 Gy), 20 times greater than Escherichia coli, is undiminished by loss of Mn-dependent superoxide dismutase (SodA). D. radiodurans radiation resistance is attributed to the accumulation of low-molecular-weight (LMW) "antioxidant" Mn(2+)-metabolite complexes that protect essential enzymes from oxidative damage. However, in vivo information about such complexes within D. radiodurans cells is lacking, and the idea that they can supplant reactive-oxygen-species (ROS)-scavenging enzymes remains controversial. In this report, measurements by advanced paramagnetic resonance techniques [electron-spin-echo (ESE)-EPR/electron nuclear double resonance/ESE envelope modulation (ESEEM)] reveal differential details of the in vivo Mn(2+) speciation in D. radiodurans and E. coli cells and their responses to 10 kGy γ-irradiation. The Mn(2+) of D. radiodurans exists predominantly as LMW complexes with nitrogenous metabolites and orthophosphate, with negligible EPR signal from Mn(2+) of SodA. Thus, the extreme radiation resistance of D. radiodurans cells cannot be attributed to SodA. Correspondingly, 10 kGy irradiation causes no change in D. radiodurans Mn(2+) speciation, despite the paucity of holo-SodA. In contrast, the EPR signal of E. coli is dominated by signals from low-symmetry enzyme sites such as that of SodA, with a minority pool of LMW Mn(2+) complexes that show negligible coordination by nitrogenous metabolites. Nonetheless, irradiation of E. coli majorly changes LMW Mn(2+) speciation, with extensive binding of nitrogenous ligands created by irradiation. We infer that E. coli is highly susceptible to radiation-induced ROS because it lacks an adequate supply of LMW Mn antioxidants.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Espectroscopía de Resonancia por Spin del Electrón / Deinococcus / Escherichia coli / Rayos gamma / Manganeso Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2013 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Espectroscopía de Resonancia por Spin del Electrón / Deinococcus / Escherichia coli / Rayos gamma / Manganeso Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2013 Tipo del documento: Article País de afiliación: Estados Unidos