Your browser doesn't support javascript.
loading
Data-adapted moving least squares method for 3-D image interpolation.
Jang, Sumi; Nam, Haewon; Lee, Yeon Ju; Jeong, Byeongseon; Lee, Rena; Yoon, Jungho.
Afiliación
  • Jang S; Institute of Mathematical Sciences, Ewha Womans University, Seoul, 120-750, Korea.
Phys Med Biol ; 58(23): 8401-18, 2013 Dec 07.
Article en En | MEDLINE | ID: mdl-24217132
In this paper, we present a nonlinear three-dimensional interpolation scheme for gray-level medical images. The scheme is based on the moving least squares method but introduces a fundamental modification. For a given evaluation point, the proposed method finds the local best approximation by reproducing polynomials of a certain degree. In particular, in order to obtain a better match to the local structures of the given image, we employ locally data-adapted least squares methods that can improve the classical one. Some numerical experiments are presented to demonstrate the performance of the proposed method. Five types of data sets are used: MR brain, MR foot, MR abdomen, CT head, and CT foot. From each of the five types, we choose five volumes. The scheme is compared with some well-known linear methods and other recently developed nonlinear methods. For quantitative comparison, we follow the paradigm proposed by Grevera and Udupa (1998). (Each slice is first assumed to be unknown then interpolated by each method. The performance of each interpolation method is assessed statistically.) The PSNR results for the estimated volumes are also provided. We observe that the new method generates better results in both quantitative and visual quality comparisons.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Imagenología Tridimensional Límite: Humans Idioma: En Revista: Phys Med Biol Año: 2013 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Imagenología Tridimensional Límite: Humans Idioma: En Revista: Phys Med Biol Año: 2013 Tipo del documento: Article