Your browser doesn't support javascript.
loading
Microvascular endothelial cells migrate upstream and align against the shear stress field created by impinging flow.
Ostrowski, Maggie A; Huang, Ngan F; Walker, Travis W; Verwijlen, Tom; Poplawski, Charlotte; Khoo, Amanda S; Cooke, John P; Fuller, Gerald G; Dunn, Alexander R.
Afiliación
  • Ostrowski MA; Chemical Engineering, Stanford University, Stanford, California.
  • Huang NF; Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, California; Stanford Cardiovascular Institute, Stanford University, Stanford, Califiornia; Division of Cardiovascular Medicine, Stanford University, Stanford, California.
  • Walker TW; Chemical Engineering, Stanford University, Stanford, California.
  • Verwijlen T; Department of Chemical Engineering, KU Leuven, Belgium.
  • Poplawski C; Chemical Engineering, Stanford University, Stanford, California.
  • Khoo AS; Division of Cardiovascular Medicine, Stanford University, Stanford, California.
  • Cooke JP; Stanford Cardiovascular Institute, Stanford University, Stanford, Califiornia; Division of Cardiovascular Medicine, Stanford University, Stanford, California.
  • Fuller GG; Chemical Engineering, Stanford University, Stanford, California. Electronic address: ggf@stanford.edu.
  • Dunn AR; Chemical Engineering, Stanford University, Stanford, California; Stanford Cardiovascular Institute, Stanford University, Stanford, Califiornia. Electronic address: alex.dunn@stanford.edu.
Biophys J ; 106(2): 366-74, 2014 Jan 21.
Article en En | MEDLINE | ID: mdl-24461011
ABSTRACT
At present, little is known about how endothelial cells respond to spatial variations in fluid shear stress such as those that occur locally during embryonic development, at heart valve leaflets, and at sites of aneurysm formation. We built an impinging flow device that exposes endothelial cells to gradients of shear stress. Using this device, we investigated the response of microvascular endothelial cells to shear-stress gradients that ranged from 0 to a peak shear stress of 9-210 dyn/cm(2). We observe that at high confluency, these cells migrate against the direction of fluid flow and concentrate in the region of maximum wall shear stress, whereas low-density microvascular endothelial cells that lack cell-cell contacts migrate in the flow direction. In addition, the cells align parallel to the flow at low wall shear stresses but orient perpendicularly to the flow direction above a critical threshold in local wall shear stress. Our observations suggest that endothelial cells are exquisitely sensitive to both magnitude and spatial gradients in wall shear stress. The impinging flow device provides a, to our knowledge, novel means to study endothelial cell migration and polarization in response to gradients in physical forces such as wall shear stress.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Estrés Mecánico / Ensayo de Materiales / Movimiento Celular / Microvasos / Hidrodinámica / Células Endoteliales de la Vena Umbilical Humana Límite: Humans Idioma: En Revista: Biophys J Año: 2014 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Estrés Mecánico / Ensayo de Materiales / Movimiento Celular / Microvasos / Hidrodinámica / Células Endoteliales de la Vena Umbilical Humana Límite: Humans Idioma: En Revista: Biophys J Año: 2014 Tipo del documento: Article