Your browser doesn't support javascript.
loading
Induction of a stringent metabolic response in intracellular stages of Leishmania mexicana leads to increased dependence on mitochondrial metabolism.
Saunders, Eleanor C; Ng, William W; Kloehn, Joachim; Chambers, Jennifer M; Ng, Milica; McConville, Malcolm J.
Afiliación
  • Saunders EC; Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria, Australia.
  • Ng WW; Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria, Australia.
  • Kloehn J; Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria, Australia.
  • Chambers JM; Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria, Australia.
  • Ng M; Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria, Australia.
  • McConville MJ; Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria, Australia.
PLoS Pathog ; 10(1): e1003888, 2014 Jan.
Article en En | MEDLINE | ID: mdl-24465208
ABSTRACT
Leishmania parasites alternate between extracellular promastigote stages in the insect vector and an obligate intracellular amastigote stage that proliferates within the phagolysosomal compartment of macrophages in the mammalian host. Most enzymes involved in Leishmania central carbon metabolism are constitutively expressed and stage-specific changes in energy metabolism remain poorly defined. Using (13)C-stable isotope resolved metabolomics and (2)H2O labelling, we show that amastigote differentiation is associated with reduction in growth rate and induction of a distinct stringent metabolic state. This state is characterized by a global decrease in the uptake and utilization of glucose and amino acids, a reduced secretion of organic acids and increased fatty acid ß-oxidation. Isotopomer analysis showed that catabolism of hexose and fatty acids provide C4 dicarboxylic acids (succinate/malate) and acetyl-CoA for the synthesis of glutamate via a compartmentalized mitochondrial tricarboxylic acid (TCA) cycle. In vitro cultivated and intracellular amastigotes are acutely sensitive to inhibitors of mitochondrial aconitase and glutamine synthetase, indicating that these anabolic pathways are essential for intracellular growth and virulence. Lesion-derived amastigotes exhibit a similar metabolism to in vitro differentiated amastigotes, indicating that this stringent response is coupled to differentiation signals rather than exogenous nutrient levels. Induction of a stringent metabolic response may facilitate amastigote survival in a nutrient-poor intracellular niche and underlie the increased dependence of this stage on hexose and mitochondrial metabolism.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Leishmania mexicana / Ciclo del Ácido Cítrico / Leishmaniasis Cutánea / Aminoácidos / Glucosa / Mitocondrias Límite: Animals País/Región como asunto: Mexico Idioma: En Revista: PLoS Pathog Año: 2014 Tipo del documento: Article País de afiliación: Australia

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Leishmania mexicana / Ciclo del Ácido Cítrico / Leishmaniasis Cutánea / Aminoácidos / Glucosa / Mitocondrias Límite: Animals País/Región como asunto: Mexico Idioma: En Revista: PLoS Pathog Año: 2014 Tipo del documento: Article País de afiliación: Australia