Optimized dual threshold entity resolution for electronic health record databases--training set size and active learning.
AMIA Annu Symp Proc
; 2013: 721-30, 2013.
Article
en En
| MEDLINE
| ID: mdl-24551372
Clinical databases may contain several records for a single patient. Multiple general entity-resolution algorithms have been developed to identify such duplicate records. To achieve optimal accuracy, algorithm parameters must be tuned to a particular dataset. The purpose of this study was to determine the required training set size for probabilistic, deterministic and Fuzzy Inference Engine (FIE) algorithms with parameters optimized using the particle swarm approach. Each algorithm classified potential duplicates into: definite match, non-match and indeterminate (i.e., requires manual review). Training sets size ranged from 2,000-10,000 randomly selected record-pairs. We also evaluated marginal uncertainty sampling for active learning. Optimization reduced manual review size (Deterministic 11.6% vs. 2.5%; FIE 49.6% vs. 1.9%; and Probabilistic 10.5% vs. 3.5%). FIE classified 98.1% of the records correctly (precision=1.0). Best performance required training on all 10,000 randomly-selected record-pairs. Active learning achieved comparable results with 3,000 records. Automated optimization is effective and targeted sampling can reduce the required training set size.
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Algoritmos
/
Inteligencia Artificial
/
Registros Electrónicos de Salud
Tipo de estudio:
Guideline
/
Prognostic_studies
Idioma:
En
Revista:
AMIA Annu Symp Proc
Asunto de la revista:
INFORMATICA MEDICA
Año:
2013
Tipo del documento:
Article