Your browser doesn't support javascript.
loading
Universal process-inert encoding architecture for polymer microparticles.
Lee, Jiseok; Bisso, Paul W; Srinivas, Rathi L; Kim, Jae Jung; Swiston, Albert J; Doyle, Patrick S.
Afiliación
  • Lee J; 1] Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [2].
  • Bisso PW; 1] Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [2] Massachusetts Institute of Technology Lincoln Laboratory, Lexington, Massachusetts 02420, USA [3].
  • Srinivas RL; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
  • Kim JJ; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
  • Swiston AJ; Massachusetts Institute of Technology Lincoln Laboratory, Lexington, Massachusetts 02420, USA.
  • Doyle PS; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
Nat Mater ; 13(5): 524-9, 2014 May.
Article en En | MEDLINE | ID: mdl-24728464
Polymer microparticles with unique, decodable identities are versatile information carriers with a small footprint. Widespread incorporation into industrial processes, however, is limited by a trade-off between encoding density, scalability and decoding robustness in diverse physicochemical environments. Here, we report an encoding strategy that combines spatial patterning with rare-earth upconversion nanocrystals, single-wavelength near-infrared excitation and portable CCD (charge-coupled device)-based decoding to distinguish particles synthesized by means of flow lithography. This architecture exhibits large, exponentially scalable encoding capacities (>10(6) particles), an ultralow decoding false-alarm rate (<10(-9)), the ability to manipulate particles by applying magnetic fields, and pronounced insensitivity to both particle chemistry and harsh processing conditions. We demonstrate quantitative agreement between observed and predicted decoding for a range of practical applications with orthogonal requirements, including covert multiparticle barcoding of pharmaceutical packaging (refractive-index matching), multiplexed microRNA detection (biocompatibility) and embedded labelling of high-temperature-cast objects (temperature resistance).
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Polímeros Idioma: En Revista: Nat Mater Asunto de la revista: CIENCIA / QUIMICA Año: 2014 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Polímeros Idioma: En Revista: Nat Mater Asunto de la revista: CIENCIA / QUIMICA Año: 2014 Tipo del documento: Article