Your browser doesn't support javascript.
loading
Quantifying differences in the epidemic curves from three influenza surveillance systems: a nonlinear regression analysis.
Thomas, E G; McCAW, J M; Kelly, H A; Grant, K A; McVERNON, J.
Afiliación
  • Thomas EG; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health,University of Melbourne,Victoria,Australia.
  • McCAW JM; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health,University of Melbourne,Victoria,Australia.
  • Kelly HA; Epidemiology Unit, Victorian Infectious Diseases Reference Laboratory, Victoria,Australia.
  • Grant KA; Epidemiology Unit, Victorian Infectious Diseases Reference Laboratory, Victoria,Australia.
  • McVERNON J; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health,University of Melbourne,Victoria,Australia.
Epidemiol Infect ; 143(2): 427-39, 2015 Jan.
Article en En | MEDLINE | ID: mdl-24759447
Influenza surveillance enables systematic collection of data on spatially and demographically heterogeneous epidemics. Different data collection mechanisms record different aspects of the underlying epidemic with varying bias and noise. We aimed to characterize key differences in weekly incidence data from three influenza surveillance systems in Melbourne, Australia, from 2009 to 2012: laboratory-confirmed influenza notified to the Victorian Department of Health, influenza-like illness (ILI) reported through the Victorian General Practice Sentinel Surveillance scheme, and ILI cases presenting to the Melbourne Medical Deputising Service. Using nonlinear regression, we found that after adjusting for the effects of geographical region and age group, characteristics of the epidemic curve (including season length, timing of peak incidence and constant baseline activity) varied across the systems. We conclude that unmeasured factors endogenous to each surveillance system cause differences in the disease patterns recorded. Future research, particularly data synthesis studies, could benefit from accounting for these differences.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Vigilancia de la Población / Encuestas Epidemiológicas / Gripe Humana / Epidemias Tipo de estudio: Diagnostic_studies / Prognostic_studies / Screening_studies Límite: Adolescent / Adult / Child / Child, preschool / Humans / Infant / Middle aged / Newborn País/Región como asunto: Oceania Idioma: En Revista: Epidemiol Infect Asunto de la revista: DOENCAS TRANSMISSIVEIS / EPIDEMIOLOGIA Año: 2015 Tipo del documento: Article País de afiliación: Australia

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Vigilancia de la Población / Encuestas Epidemiológicas / Gripe Humana / Epidemias Tipo de estudio: Diagnostic_studies / Prognostic_studies / Screening_studies Límite: Adolescent / Adult / Child / Child, preschool / Humans / Infant / Middle aged / Newborn País/Región como asunto: Oceania Idioma: En Revista: Epidemiol Infect Asunto de la revista: DOENCAS TRANSMISSIVEIS / EPIDEMIOLOGIA Año: 2015 Tipo del documento: Article País de afiliación: Australia