Your browser doesn't support javascript.
loading
Bioinformatics-driven discovery of rational combination for overcoming EGFR-mutant lung cancer resistance to EGFR therapy.
Kim, Jihye; Vasu, Vihas T; Mishra, Rangnath; Singleton, Katherine R; Yoo, Minjae; Leach, Sonia M; Farias-Hesson, Eveline; Mason, Robert J; Kang, Jaewoo; Ramamoorthy, Preveen; Kern, Jeffrey A; Heasley, Lynn E; Finigan, James H; Tan, Aik Choon.
Afiliación
  • Kim J; Division of Medical Oncology, Department of Medicine, Translational Bioinformatics and Cancer Systems Biology Laboratory, University of Colorado Anschutz Medical Campus, 80045 Aurora, Department of Medicine, National Jewish Health, 80206 Denver, Department of Craniofacial Biology, School of Dental M
  • Vasu VT; Division of Medical Oncology, Department of Medicine, Translational Bioinformatics and Cancer Systems Biology Laboratory, University of Colorado Anschutz Medical Campus, 80045 Aurora, Department of Medicine, National Jewish Health, 80206 Denver, Department of Craniofacial Biology, School of Dental M
  • Mishra R; Division of Medical Oncology, Department of Medicine, Translational Bioinformatics and Cancer Systems Biology Laboratory, University of Colorado Anschutz Medical Campus, 80045 Aurora, Department of Medicine, National Jewish Health, 80206 Denver, Department of Craniofacial Biology, School of Dental M
  • Singleton KR; Division of Medical Oncology, Department of Medicine, Translational Bioinformatics and Cancer Systems Biology Laboratory, University of Colorado Anschutz Medical Campus, 80045 Aurora, Department of Medicine, National Jewish Health, 80206 Denver, Department of Craniofacial Biology, School of Dental M
  • Yoo M; Division of Medical Oncology, Department of Medicine, Translational Bioinformatics and Cancer Systems Biology Laboratory, University of Colorado Anschutz Medical Campus, 80045 Aurora, Department of Medicine, National Jewish Health, 80206 Denver, Department of Craniofacial Biology, School of Dental M
  • Leach SM; Division of Medical Oncology, Department of Medicine, Translational Bioinformatics and Cancer Systems Biology Laboratory, University of Colorado Anschutz Medical Campus, 80045 Aurora, Department of Medicine, National Jewish Health, 80206 Denver, Department of Craniofacial Biology, School of Dental M
  • Farias-Hesson E; Division of Medical Oncology, Department of Medicine, Translational Bioinformatics and Cancer Systems Biology Laboratory, University of Colorado Anschutz Medical Campus, 80045 Aurora, Department of Medicine, National Jewish Health, 80206 Denver, Department of Craniofacial Biology, School of Dental M
  • Mason RJ; Division of Medical Oncology, Department of Medicine, Translational Bioinformatics and Cancer Systems Biology Laboratory, University of Colorado Anschutz Medical Campus, 80045 Aurora, Department of Medicine, National Jewish Health, 80206 Denver, Department of Craniofacial Biology, School of Dental M
  • Kang J; Division of Medical Oncology, Department of Medicine, Translational Bioinformatics and Cancer Systems Biology Laboratory, University of Colorado Anschutz Medical Campus, 80045 Aurora, Department of Medicine, National Jewish Health, 80206 Denver, Department of Craniofacial Biology, School of Dental M
  • Ramamoorthy P; Division of Medical Oncology, Department of Medicine, Translational Bioinformatics and Cancer Systems Biology Laboratory, University of Colorado Anschutz Medical Campus, 80045 Aurora, Department of Medicine, National Jewish Health, 80206 Denver, Department of Craniofacial Biology, School of Dental M
  • Kern JA; Division of Medical Oncology, Department of Medicine, Translational Bioinformatics and Cancer Systems Biology Laboratory, University of Colorado Anschutz Medical Campus, 80045 Aurora, Department of Medicine, National Jewish Health, 80206 Denver, Department of Craniofacial Biology, School of Dental M
  • Heasley LE; Division of Medical Oncology, Department of Medicine, Translational Bioinformatics and Cancer Systems Biology Laboratory, University of Colorado Anschutz Medical Campus, 80045 Aurora, Department of Medicine, National Jewish Health, 80206 Denver, Department of Craniofacial Biology, School of Dental M
  • Finigan JH; Division of Medical Oncology, Department of Medicine, Translational Bioinformatics and Cancer Systems Biology Laboratory, University of Colorado Anschutz Medical Campus, 80045 Aurora, Department of Medicine, National Jewish Health, 80206 Denver, Department of Craniofacial Biology, School of Dental M
  • Tan AC; Division of Medical Oncology, Department of Medicine, Translational Bioinformatics and Cancer Systems Biology Laboratory, University of Colorado Anschutz Medical Campus, 80045 Aurora, Department of Medicine, National Jewish Health, 80206 Denver, Department of Craniofacial Biology, School of Dental M
Bioinformatics ; 30(17): 2393-8, 2014 Sep 01.
Article en En | MEDLINE | ID: mdl-24812339
ABSTRACT
MOTIVATION Non-small-cell lung cancer (NSCLC) is the leading cause of cancer death in the United States. Targeted tyrosine kinase inhibitors (TKIs) directed against the epidermal growth factor receptor (EGFR) have been widely and successfully used in treating NSCLC patients with activating EGFR mutations. Unfortunately, the duration of response is short-lived, and all patients eventually relapse by acquiring resistance mechanisms.

RESULT:

We performed an integrative systems biology approach to determine essential kinases that drive EGFR-TKI resistance in cancer cell lines. We used a series of bioinformatics methods to analyze and integrate the functional genetics screen and RNA-seq data to identify a set of kinases that are critical in survival and proliferation in these TKI-resistant lines. By connecting the essential kinases to compounds using a novel kinase connectivity map (K-Map), we identified and validated bosutinib as an effective compound that could inhibit proliferation and induce apoptosis in TKI-resistant lines. A rational combination of bosutinib and gefitinib showed additive and synergistic effects in cancer cell lines resistant to EGFR TKI alone.

CONCLUSIONS:

We have demonstrated a bioinformatics-driven discovery roadmap for drug repurposing and development in overcoming resistance in EGFR-mutant NSCLC, which could be generalized to other cancer types in the era of personalized medicine. AVAILABILITY AND IMPLEMENTATION K-Map can be accessible at http//tanlab.ucdenver.edu/kMap. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Protocolos de Quimioterapia Combinada Antineoplásica / Carcinoma de Pulmón de Células no Pequeñas / Inhibidores de Proteínas Quinasas / Receptores ErbB / Neoplasias Pulmonares Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2014 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Protocolos de Quimioterapia Combinada Antineoplásica / Carcinoma de Pulmón de Células no Pequeñas / Inhibidores de Proteínas Quinasas / Receptores ErbB / Neoplasias Pulmonares Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2014 Tipo del documento: Article