Your browser doesn't support javascript.
loading
Mouse myosin-19 is a plus-end-directed, high-duty ratio molecular motor.
Lu, Zekuan; Ma, Xiao-Nan; Zhang, Hai-Man; Ji, Huan-Hong; Ding, Hao; Zhang, Jie; Luo, Dan; Sun, Yujie; Li, Xiang-Dong.
Afiliación
  • Lu Z; From the Group of Cell Motility and Muscle Contraction, National Laboratory of Integrated Management of Insect Pests and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101 and.
  • Ma XN; From the Group of Cell Motility and Muscle Contraction, National Laboratory of Integrated Management of Insect Pests and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101 and.
  • Zhang HM; From the Group of Cell Motility and Muscle Contraction, National Laboratory of Integrated Management of Insect Pests and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101 and.
  • Ji HH; From the Group of Cell Motility and Muscle Contraction, National Laboratory of Integrated Management of Insect Pests and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101 and.
  • Ding H; From the Group of Cell Motility and Muscle Contraction, National Laboratory of Integrated Management of Insect Pests and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101 and.
  • Zhang J; From the Group of Cell Motility and Muscle Contraction, National Laboratory of Integrated Management of Insect Pests and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101 and.
  • Luo D; From the Group of Cell Motility and Muscle Contraction, National Laboratory of Integrated Management of Insect Pests and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101 and.
  • Sun Y; the Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China.
  • Li XD; From the Group of Cell Motility and Muscle Contraction, National Laboratory of Integrated Management of Insect Pests and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101 and lixd@ioz.ac.cn.
J Biol Chem ; 289(26): 18535-48, 2014 Jun 27.
Article en En | MEDLINE | ID: mdl-24825904
ABSTRACT
Class XIX myosin (Myo19) is a vertebrate-specific unconventional myosin, responsible for the transport of mitochondria. To characterize biochemical properties of Myo19, we prepared recombinant mouse Myo19-truncated constructs containing the motor domain and the IQ motifs using the baculovirus/Sf9 expression system. We identified regulatory light chain (RLC) of smooth muscle/non-muscle myosin-2 as the light chain of Myo19. The actin-activated ATPase activity and the actin-gliding velocity of Myo19-truncated constructs were about one-third and one-sixth as those of myosin-5a, respectively. The apparent affinity of Myo19 to actin was about the same as that of myosin-5a. The RLCs bound to Myo19 could be phosphorylated by myosin light chain kinase, but this phosphorylation had little effect on the actin-activated ATPase activity and the actin-gliding activity of Myo19-truncated constructs. Using dual fluorescence-labeled actin filaments, we determined that Myo19 is a plus-end-directed molecular motor. We found that, similar to that of the high-duty ratio myosin, such as myosin-5a, ADP release rate was comparable with the maximal actin-activated ATPase activity of Myo19, indicating that ADP release is a rate-limiting step for the ATPase cycle of acto-Myo19. ADP strongly inhibited the actin-activated ATPase activity and actin-gliding activity of Myo19-truncated constructs. Based on the above results, we concluded that Myo19 is a high-duty ratio molecular motor moving to the plus-end of the actin filament.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Actinas Límite: Animals Idioma: En Revista: J Biol Chem Año: 2014 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Actinas Límite: Animals Idioma: En Revista: J Biol Chem Año: 2014 Tipo del documento: Article