Polypeptide-based aerosol nanoparticles: self-assembly and control of conformation by solvent and thermal annealing.
Biomacromolecules
; 15(7): 2607-15, 2014 Jul 14.
Article
en En
| MEDLINE
| ID: mdl-24848300
Nanoconfined self-assemblies within aerosol nanoparticles and control of the secondary structures are shown here upon ionically complexing poly(L-lysine) (PLL) with dodecylbenzenesulfonic acid (DBSA) surfactant and using solvents chloroform, 1-propanol, or dimethylformamide. Different solvent volatilities and drying temperatures allowed tuning the kinetics of morphology formation. The supramolecular self-assembly and morphology were studied using cryo-TEM and SEM, and the secondary structures, using FT-IR. Highly volatile chloroform led to the major fraction of α-helical conformation of PLL(DBSA), whereas less volatile solvents or higher drying temperatures led to the increasing fraction of ß-sheets. Added drugs budesonide and ketoprofen prevented ß-sheet formation and studied PLL(DBSA)-drug nanoparticles were in the α-helical conformation. Preliminary studies showed that ketoprofen released with a slower rate than budesonide which was hypothesized to result from different localization of drugs within the PLL(DBSA) nanoparticles. These results instruct to prepare polypeptide aerosol nanoparticles with internal self-assembled structures and to control the secondary structures by aerosol solvent annealing, which we foresee to be useful, e.g., toward controlling the release of poorly soluble drug molecules.
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Péptidos
/
Portadores de Fármacos
/
Nanopartículas
Idioma:
En
Revista:
Biomacromolecules
Asunto de la revista:
BIOLOGIA MOLECULAR
Año:
2014
Tipo del documento:
Article
País de afiliación:
Finlandia