Your browser doesn't support javascript.
loading
Localization of Epileptogenic Zone on Pre-surgical Intracranial EEG Recordings: Toward a Validation of Quantitative Signal Analysis Approaches.
Andrzejak, Ralph G; David, Olivier; Gnatkovsky, Vadym; Wendling, Fabrice; Bartolomei, Fabrice; Francione, Stefano; Kahane, Philippe; Schindler, Kaspar; de Curtis, Marco.
Afiliación
  • Andrzejak RG; Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain.
  • David O; Brain Function and Neuromodulation, Université Joseph Fourier, Grenoble, France.
  • Gnatkovsky V; Unit of Experimental Neurophysiology and Epileptology, Fondazione Istituto Neurologico Carlo Besta, Milan, Italy.
  • Wendling F; INSERM, U1099, Université de Rennes 1, LTSI, 35000, Rennes, France.
  • Bartolomei F; INSERM, U1106, Clinical Epileptology Unit, La Timone, 13000, Marseille, France.
  • Francione S; Claudio Munari Epilepsy Surgery Center, Ospedale Niguarda Ca' Granda, Milan, Italy.
  • Kahane P; Epilepsy Unit, Neurology & Psychiatry Department, Grenoble University Hospital, Grenoble, France.
  • Schindler K; qEEG Group, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland.
  • de Curtis M; Unit of Experimental Neurophysiology and Epileptology, Fondazione Istituto Neurologico Carlo Besta, Milan, Italy. decurtis@istituto-besta.it.
Brain Topogr ; 28(6): 832-7, 2015 Nov.
Article en En | MEDLINE | ID: mdl-24929558
In patients diagnosed with pharmaco-resistant epilepsy, cerebral areas responsible for seizure generation can be defined by performing implantation of intracranial electrodes. The identification of the epileptogenic zone (EZ) is based on visual inspection of the intracranial electroencephalogram (IEEG) performed by highly qualified neurophysiologists. New computer-based quantitative EEG analyses have been developed in collaboration with the signal analysis community to expedite EZ detection. The aim of the present report is to compare different signal analysis approaches developed in four different European laboratories working in close collaboration with four European Epilepsy Centers. Computer-based signal analysis methods were retrospectively applied to IEEG recordings performed in four patients undergoing pre-surgical exploration of pharmaco-resistant epilepsy. The four methods elaborated by the different teams to identify the EZ are based either on frequency analysis, on nonlinear signal analysis, on connectivity measures or on statistical parametric mapping of epileptogenicity indices. All methods converge on the identification of EZ in patients that present with fast activity at seizure onset. When traditional visual inspection was not successful in detecting EZ on IEEG, the different signal analysis methods produced highly discordant results. Quantitative analysis of IEEG recordings complement clinical evaluation by contributing to the study of epileptogenic networks during seizures. We demonstrate that the degree of sensitivity of different computer-based methods to detect the EZ in respect to visual EEG inspection depends on the specific seizure pattern.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Encéfalo / Mapeo Encefálico / Electroencefalografía / Epilepsia / Ondas Encefálicas Límite: Adult / Female / Humans / Male Idioma: En Revista: Brain Topogr Asunto de la revista: CEREBRO Año: 2015 Tipo del documento: Article País de afiliación: España

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Encéfalo / Mapeo Encefálico / Electroencefalografía / Epilepsia / Ondas Encefálicas Límite: Adult / Female / Humans / Male Idioma: En Revista: Brain Topogr Asunto de la revista: CEREBRO Año: 2015 Tipo del documento: Article País de afiliación: España