A gold exchange: a mechanistic study of a reversible, formal ethylene insertion into a gold(III)-oxygen bond.
J Am Chem Soc
; 136(28): 10104-15, 2014 Jul 16.
Article
en En
| MEDLINE
| ID: mdl-24946167
The Au(III) complex Au(OAc(F))2(tpy) (1, OAc(F) = OCOCF3; tpy = 2-p-tolylpyridine) undergoes reversible dissociation of the OAc(F) ligand trans to C, as seen by (19)F NMR. In dichloromethane or trifluoroacetic acid (TFA), the reaction between 1 and ethylene produces Au(OAc(F))(CH2CH2OAc(F))(tpy) (2). The reaction is a formal insertion of the olefin into the Au-O bond trans to N. In TFA this reaction occurs in less than 5 min at ambient temperature, while 1 day is required in dichloromethane. In trifluoroethanol (TFE), Au(OAc(F))(CH2CH2OCH2CF3)(tpy) (3) is formed as the major product. Both 2 and 3 have been characterized by X-ray crystallography. In TFA/TFE mixtures, 2 and 3 are in equilibrium with a slight thermodynamic preference for 2 over 3. Exposure of 2 to ethylene-d4 in TFA caused exchange of ethylene-d4 for ethylene at room temperature. The reaction of 1 with cis-1,2-dideuterioethylene furnished Au(OAc(F))(threo-CHDCHDOAc(F))(tpy), consistent with an overall anti addition to ethylene. DFT(PBE0-D3) calculations indicate that the first step of the formal insertion is an associative substitution of the OAc(F) trans to N by ethylene. Addition of free (-)OAc(F) to coordinated ethylene furnishes 2. While substitution of OAc(F) by ethylene trans to C has a lower barrier, the kinetic and thermodynamic preference of 2 over the isomer with CH2CH2OAc(F) trans to C accounts for the selective formation of 2. The DFT calculations suggest that the higher reaction rates observed in TFA and TFE compared with CH2Cl2 arise from stabilization of the (-)OAc(F) anion lost during the first reaction step.
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Idioma:
En
Revista:
J Am Chem Soc
Año:
2014
Tipo del documento:
Article
País de afiliación:
Noruega