Your browser doesn't support javascript.
loading
Slow kinetics of Brownian maxima.
Ben-Naim, E; Krapivsky, P L.
Afiliación
  • Ben-Naim E; Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
  • Krapivsky PL; Department of Physics, Boston University, Boston, Massachusetts 02215, USA.
Phys Rev Lett ; 113(3): 030604, 2014 Jul 18.
Article en En | MEDLINE | ID: mdl-25083626
We study extreme-value statistics of Brownian trajectories in one dimension. We define the maximum as the largest position to date and compare maxima of two particles undergoing independent Brownian motion. We focus on the probability P(t) that the two maxima remain ordered up to time t and find the algebraic decay P ∼ t(-ß) with exponent ß = 1/4. When the two particles have diffusion constants D(1) and D(2), the exponent depends on the mobilities, ß = (1/π) arctan sqrt[D(2)/D(1)]. We also use numerical simulations to investigate maxima of multiple particles in one dimension and the largest extension of particles in higher dimensions.
Buscar en Google
Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Phys Rev Lett Año: 2014 Tipo del documento: Article País de afiliación: Estados Unidos
Buscar en Google
Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Phys Rev Lett Año: 2014 Tipo del documento: Article País de afiliación: Estados Unidos