Slow kinetics of Brownian maxima.
Phys Rev Lett
; 113(3): 030604, 2014 Jul 18.
Article
en En
| MEDLINE
| ID: mdl-25083626
We study extreme-value statistics of Brownian trajectories in one dimension. We define the maximum as the largest position to date and compare maxima of two particles undergoing independent Brownian motion. We focus on the probability P(t) that the two maxima remain ordered up to time t and find the algebraic decay P â¼ t(-ß) with exponent ß = 1/4. When the two particles have diffusion constants D(1) and D(2), the exponent depends on the mobilities, ß = (1/π) arctan sqrt[D(2)/D(1)]. We also use numerical simulations to investigate maxima of multiple particles in one dimension and the largest extension of particles in higher dimensions.
Buscar en Google
Colección:
01-internacional
Banco de datos:
MEDLINE
Idioma:
En
Revista:
Phys Rev Lett
Año:
2014
Tipo del documento:
Article
País de afiliación:
Estados Unidos