Your browser doesn't support javascript.
loading
Smoking behavior: a cross-sectional study to assess the dimensionality of the brief Wisconsin inventory of smoking dependence motives and identify different typologies among young daily smokers.
Pancani, Luca; D'Addario, Marco; Cappelletti, Erika Rosa; Greco, Andrea; Monzani, Dario; Steca, Patrizia.
Afiliación
  • Pancani L; Department of Psychology, Università degli Studi di Milano-Bicocca, Milan, Italy l.pancani@campus.unimib.it.
  • D'Addario M; Department of Psychology, Università degli Studi di Milano-Bicocca, Milan, Italy.
  • Cappelletti ER; Department of Psychology, Università degli Studi di Milano-Bicocca, Milan, Italy.
  • Greco A; Department of Psychology, Università degli Studi di Milano-Bicocca, Milan, Italy.
  • Monzani D; Department of Psychology, Università degli Studi di Milano-Bicocca, Milan, Italy.
  • Steca P; Department of Psychology, Università degli Studi di Milano-Bicocca, Milan, Italy.
Nicotine Tob Res ; 17(1): 98-105, 2015 Jan.
Article en En | MEDLINE | ID: mdl-25168033
INTRODUCTION: The present study aims to investigate the dimensionality of the brief version of the Wisconsin Inventory of Smoking Dependence Motives (B-WISDM) and identify different smoking motivational profiles among young daily smokers (N = 375). METHODS: We tested 3 measurement models of the B-WISDM using confirmatory factor analysis, whereas cluster analysis was used to identify the smokers' motivational profiles. Furthermore, we compared clusters toward dependence level and the number of cigarettes smoked per day using analysis of variance tests. RESULTS: The results confirmed that the B-WISDM measures 11 first-order intercorrelated factors. The second-order model, originally proposed for the longer version of the questionnaire, showed adequate fit indices but fitted the data significantly worse than the first-order model. Five motivational clusters were identified and differed in terms of tobacco addiction and the number of cigarettes smoked per day. Although each cluster had specific features, 2 main smoker groups were distinguished: Group A (composed of 3 clusters), which was mainly characterized by high levels of secondary dependence motives, and Group B (composed of 2 clusters), in which the primary and secondary dependence motives reached similar levels. In general, the clusters of Group B were more addicted to cigarettes than Group A clusters. CONCLUSIONS: Using the B-WISDM to identify different smoking motivational profiles has important practical implications because they might help characterize addiction, which represents the first step to help an individual quit smoking.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Fumar / Conducta Adictiva / Motivación Tipo de estudio: Observational_studies / Prevalence_studies / Prognostic_studies / Qualitative_research / Risk_factors_studies Límite: Adolescent / Adult / Female / Humans / Male País/Región como asunto: America do norte Idioma: En Revista: Nicotine Tob Res Asunto de la revista: SAUDE PUBLICA Año: 2015 Tipo del documento: Article País de afiliación: Italia

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Fumar / Conducta Adictiva / Motivación Tipo de estudio: Observational_studies / Prevalence_studies / Prognostic_studies / Qualitative_research / Risk_factors_studies Límite: Adolescent / Adult / Female / Humans / Male País/Región como asunto: America do norte Idioma: En Revista: Nicotine Tob Res Asunto de la revista: SAUDE PUBLICA Año: 2015 Tipo del documento: Article País de afiliación: Italia