Your browser doesn't support javascript.
loading
Cell mechanics: principles, practices, and prospects.
Article en En | MEDLINE | ID: mdl-25269160
ABSTRACT
Cells generate and sustain mechanical forces within their environment as part of their normal physiology. They are active materials that can detect mechanical stimulation by the activation of mechanosensitive signaling pathways, and respond to physical cues through cytoskeletal re-organization and force generation. Genetic mutations and pathogens that disrupt the cytoskeletal architecture can result in changes to cell mechanical properties such as elasticity, adhesiveness, and viscosity. On the other hand, perturbations to the mechanical environment can affect cell behavior. These transformations are often a hallmark and symptom of a variety of pathologies. Consequently, there are now a myriad of experimental techniques and theoretical models adapted from soft matter physics and mechanical engineering to characterize cell mechanical properties. Interdisciplinary research combining modern molecular biology with advanced cell mechanical characterization techniques now paves the way for furthering our fundamental understanding of cell mechanics and its role in development, physiology, and disease. We describe a generalized outline for measuring cell mechanical properties including loading protocols, tools, and data interpretation.We summarize recent advances in the field and explain how cell biomechanics research can be adopted by physicists, engineers, biologists, and clinicians alike.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Fenómenos Fisiológicos Celulares Tipo de estudio: Guideline Límite: Animals / Humans Idioma: En Revista: Wiley Interdiscip Rev Syst Biol Med Asunto de la revista: BIOLOGIA / BIOTECNOLOGIA Año: 2014 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Fenómenos Fisiológicos Celulares Tipo de estudio: Guideline Límite: Animals / Humans Idioma: En Revista: Wiley Interdiscip Rev Syst Biol Med Asunto de la revista: BIOLOGIA / BIOTECNOLOGIA Año: 2014 Tipo del documento: Article