Your browser doesn't support javascript.
loading
Elucidating the thermal decomposition of dimethyl methylphosphonate by vacuum ultraviolet (VUV) photoionization: pathways to the PO radical, a key species in flame-retardant mechanisms.
Liang, Shuyu; Hemberger, Patrick; Neisius, N Matthias; Bodi, Andras; Grützmacher, Hansjörg; Levalois-Grützmacher, Joelle; Gaan, Sabyasachi.
Afiliación
  • Liang S; Additives and Chemistry, Advanced Fibers, Empa, Swiss Federal Laboratories for Materials Science, Lerchenfeldstrasse 5, 9014 St. Gallen (Switzerland); Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich (Switzerland).
Chemistry ; 21(3): 1073-80, 2015 Jan 12.
Article en En | MEDLINE | ID: mdl-25413700
The production of phosphoryl species (PO, PO2, HOPO) is believed to be of great importance for efficient flame-retardant action in the gas phase. We present a detailed investigation of the thermal decomposition of dimethyl methylphosphonate (DMMP) probed by vacuum ultraviolet (VUV) synchrotron radiation and imaging photoelectron photoion coincidence (iPEPICO) spectroscopy. This technique provides a snapshot of the thermolysis process and direct evidence of how the reactive phosphoryl species are generated during heat exposure. One of the key findings of this work is that only PO is formed in high concentration upon DMMP decomposition, whereas PO2 is absent. It can be concluded that the formation of PO2 needs an oxidative environment, which is typically the case in a real flame. Based on the identification of products such as methanol, formaldehyde, and PO, as well as the intermediates O=P-CH3, H2C=P-OH, and H2C=P(=O)H, supported by quantum chemical calculations, we were able to describe the predominant pathways that lead to active phosphoryl species during the thermal decomposition of DMMP.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Chemistry Asunto de la revista: QUIMICA Año: 2015 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Chemistry Asunto de la revista: QUIMICA Año: 2015 Tipo del documento: Article