Your browser doesn't support javascript.
loading
Combining automatic table classification and relationship extraction in extracting anticancer drug-side effect pairs from full-text articles.
Xu, Rong; Wang, QuanQiu.
Afiliación
  • Xu R; Medical Informatics Program, Center for Clinical Investigation, Case Western Reserve University, Cleveland, OH 44106, United States. Electronic address: rxx@case.edu.
  • Wang Q; ThinTek, LLC, Palo Alto, CA 94306, United States. Electronic address: qwang@thintek.com.
J Biomed Inform ; 53: 128-35, 2015 Feb.
Article en En | MEDLINE | ID: mdl-25445920
Anticancer drug-associated side effect knowledge often exists in multiple heterogeneous and complementary data sources. A comprehensive anticancer drug-side effect (drug-SE) relationship knowledge base is important for computation-based drug target discovery, drug toxicity predication and drug repositioning. In this study, we present a two-step approach by combining table classification and relationship extraction to extract drug-SE pairs from a large number of high-profile oncological full-text articles. The data consists of 31,255 tables downloaded from the Journal of Oncology (JCO). We first trained a statistical classifier to classify tables into SE-related and -unrelated categories. We then extracted drug-SE pairs from SE-related tables. We compared drug side effect knowledge extracted from JCO tables to that derived from FDA drug labels. Finally, we systematically analyzed relationships between anti-cancer drug-associated side effects and drug-associated gene targets, metabolism genes, and disease indications. The statistical table classifier is effective in classifying tables into SE-related and -unrelated (precision: 0.711; recall: 0.941; F1: 0.810). We extracted a total of 26,918 drug-SE pairs from SE-related tables with a precision of 0.605, a recall of 0.460, and a F1 of 0.520. Drug-SE pairs extracted from JCO tables is largely complementary to those derived from FDA drug labels; as many as 84.7% of the pairs extracted from JCO tables have not been included a side effect database constructed from FDA drug labels. Side effects associated with anticancer drugs positively correlate with drug target genes, drug metabolism genes, and disease indications.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Biología Computacional / Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos / Reposicionamiento de Medicamentos / Neoplasias / Antineoplásicos Límite: Humans País/Región como asunto: America do norte Idioma: En Revista: J Biomed Inform Asunto de la revista: INFORMATICA MEDICA Año: 2015 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Biología Computacional / Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos / Reposicionamiento de Medicamentos / Neoplasias / Antineoplásicos Límite: Humans País/Región como asunto: America do norte Idioma: En Revista: J Biomed Inform Asunto de la revista: INFORMATICA MEDICA Año: 2015 Tipo del documento: Article