Your browser doesn't support javascript.
loading
Biomonitoring of N-ethyl-2-pyrrolidone in automobile varnishers.
Koslitz, Stephan; Meier, Swetlana; Schindler, Birgit Karin; Weiss, Tobias; Koch, Holger Martin; Brüning, Thomas; Käfferlein, Heiko Udo.
Afiliación
  • Koslitz S; Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany.
  • Meier S; Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany.
  • Schindler BK; Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany.
  • Weiss T; Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany.
  • Koch HM; Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany.
  • Brüning T; Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany.
  • Käfferlein HU; Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany. Electronic address: kaefferlein@ipa-dguv.de.
Toxicol Lett ; 231(2): 142-6, 2014 Dec 01.
Article en En | MEDLINE | ID: mdl-25455446
N-alkyl-2-pyrrolidones are important organic solvents for varnishes in industry. This study investigates exposure to N-ethyl-2-pyrrolidone (NEP) in varnishing of hard plastic components in an automobile plant. Two specific biomarkers of exposure, 5-hydroxy-N-ethyl-2-pyrrolidone (5-HNEP) and 2-hydroxy-N-ethylsuccinimide (2-HESI), were analyzed in urine samples of 14 workers. For this purpose, pre-shift, post-shift and next day pre-shift urine samples were collected midweek. Twelve workers performed regular work tasks (loading, wiping and packing), whereas two workers performed special work tasks including cleaning the sprayer system with organic solvents containing N-alkyl-2-pyrrolidones. Spot urine samples of nine non-exposed persons of the same plant served as controls. Median post-shift urinary levels of workers with regular work tasks (5-HNEP: 0.15 mg/L; 2-HESI: 0.19 mg/L) were ∼5-fold higher compared to the controls (0.03 mg/L each). Continuously increasing metabolite levels, from pre-shift via post-shift to pre-shift samples of the following day, were observed in particular for the two workers with the special working tasks. Maximum levels were 31.01 mg/L (5-HNEP) and 8.45 mg/L (2-HESI). No clear trend was evident for workers with regular working tasks. In summary, we were able to show that workers can be exposed to NEP during varnishing tasks in the automobile industry.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Pirrolidinonas / Monitoreo del Ambiente / Exposición Profesional / Contaminantes Ocupacionales del Aire Límite: Humans Idioma: En Revista: Toxicol Lett Año: 2014 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Pirrolidinonas / Monitoreo del Ambiente / Exposición Profesional / Contaminantes Ocupacionales del Aire Límite: Humans Idioma: En Revista: Toxicol Lett Año: 2014 Tipo del documento: Article País de afiliación: Alemania