Your browser doesn't support javascript.
loading
A highly conserved program of neuronal microexons is misregulated in autistic brains.
Irimia, Manuel; Weatheritt, Robert J; Ellis, Jonathan D; Parikshak, Neelroop N; Gonatopoulos-Pournatzis, Thomas; Babor, Mariana; Quesnel-Vallières, Mathieu; Tapial, Javier; Raj, Bushra; O'Hanlon, Dave; Barrios-Rodiles, Miriam; Sternberg, Michael J E; Cordes, Sabine P; Roth, Frederick P; Wrana, Jeffrey L; Geschwind, Daniel H; Blencowe, Benjamin J.
Afiliación
  • Irimia M; Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada; EMBL/CRG Research Unit in Systems Biology, Centre for Genomic Regulation (CRG), 88 Dr. Aiguader, Barcelona 08003, Spain. Electronic address: mirimia@gmail.com.
  • Weatheritt RJ; Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada; MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
  • Ellis JD; Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada.
  • Parikshak NN; Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, 695 Charles E. Young Drive South, Los Angeles, CA 90095, USA.
  • Gonatopoulos-Pournatzis T; Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada.
  • Babor M; Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada.
  • Quesnel-Vallières M; Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada.
  • Tapial J; EMBL/CRG Research Unit in Systems Biology, Centre for Genomic Regulation (CRG), 88 Dr. Aiguader, Barcelona 08003, Spain.
  • Raj B; Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada.
  • O'Hanlon D; Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada.
  • Barrios-Rodiles M; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada.
  • Sternberg MJ; Centre for Integrative Systems Biology and Bioinformatics, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK.
  • Cordes SP; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
  • Roth FP; Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S
  • Wrana JL; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
  • Geschwind DH; Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, 695 Charles E. Young Drive South, Los Angeles, CA 90095, USA.
  • Blencowe BJ; Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada. Electronic address: b.blencowe@utoronto.ca.
Cell ; 159(7): 1511-23, 2014 Dec 18.
Article en En | MEDLINE | ID: mdl-25525873
ABSTRACT
Alternative splicing (AS) generates vast transcriptomic and proteomic complexity. However, which of the myriad of detected AS events provide important biological functions is not well understood. Here, we define the largest program of functionally coordinated, neural-regulated AS described to date in mammals. Relative to all other types of AS within this program, 3-15 nucleotide "microexons" display the most striking evolutionary conservation and switch-like regulation. These microexons modulate the function of interaction domains of proteins involved in neurogenesis. Most neural microexons are regulated by the neuronal-specific splicing factor nSR100/SRRM4, through its binding to adjacent intronic enhancer motifs. Neural microexons are frequently misregulated in the brains of individuals with autism spectrum disorder, and this misregulation is associated with reduced levels of nSR100. The results thus reveal a highly conserved program of dynamic microexon regulation associated with the remodeling of protein-interaction networks during neurogenesis, the misregulation of which is linked to autism.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Trastornos Generalizados del Desarrollo Infantil / Empalme Alternativo / Proteínas del Tejido Nervioso / Neuronas Tipo de estudio: Prognostic_studies Límite: Animals / Humans Idioma: En Revista: Cell Año: 2014 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Trastornos Generalizados del Desarrollo Infantil / Empalme Alternativo / Proteínas del Tejido Nervioso / Neuronas Tipo de estudio: Prognostic_studies Límite: Animals / Humans Idioma: En Revista: Cell Año: 2014 Tipo del documento: Article