Your browser doesn't support javascript.
loading
Scalable tight-binding model for graphene.
Liu, Ming-Hao; Rickhaus, Peter; Makk, Péter; Tóvári, Endre; Maurand, Romain; Tkatschenko, Fedor; Weiss, Markus; Schönenberger, Christian; Richter, Klaus.
Afiliación
  • Liu MH; Institut für Theoretische Physik, Universität Regensburg, D-93040 Regensburg, Germany.
  • Rickhaus P; Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland.
  • Makk P; Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland.
  • Tóvári E; Department of Physics, Budapest University of Technology and Economics and Condensed Matter Research Group of the Hungarian Academy of Sciences, Budafoki ut 8, 1111 Budapest, Hungary.
  • Maurand R; University Grenoble Alpes and CEA-INAC-SPSMS, F-38000 Grenoble, France.
  • Tkatschenko F; Institut für Theoretische Physik, Universität Regensburg, D-93040 Regensburg, Germany.
  • Weiss M; Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland.
  • Schönenberger C; Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland.
  • Richter K; Institut für Theoretische Physik, Universität Regensburg, D-93040 Regensburg, Germany.
Phys Rev Lett ; 114(3): 036601, 2015 Jan 23.
Article en En | MEDLINE | ID: mdl-25659011
ABSTRACT
Artificial graphene consisting of honeycomb lattices other than the atomic layer of carbon has been shown to exhibit electronic properties similar to real graphene. Here, we reverse the argument to show that transport properties of real graphene can be captured by simulations using "theoretical artificial graphene." To prove this, we first derive a simple condition, along with its restrictions, to achieve band structure invariance for a scalable graphene lattice. We then present transport measurements for an ultraclean suspended single-layer graphene pn junction device, where ballistic transport features from complex Fabry-Pérot interference (at zero magnetic field) to the quantum Hall effect (at unusually low field) are observed and are well reproduced by transport simulations based on properly scaled single-particle tight-binding models. Our findings indicate that transport simulations for graphene can be efficiently performed with a strongly reduced number of atomic sites, allowing for reliable predictions for electric properties of complex graphene devices. We demonstrate the capability of the model by applying it to predict so-far unexplored gate-defined conductance quantization in single-layer graphene.
Buscar en Google
Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Phys Rev Lett Año: 2015 Tipo del documento: Article País de afiliación: Alemania
Buscar en Google
Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Phys Rev Lett Año: 2015 Tipo del documento: Article País de afiliación: Alemania