Your browser doesn't support javascript.
loading
Central Nervous System Regulation of Intestinal Lipoprotein Metabolism by Glucagon-Like Peptide-1 via a Brain-Gut Axis.
Farr, Sarah; Baker, Christopher; Naples, Mark; Taher, Jennifer; Iqbal, Jahangir; Hussain, Mahmood; Adeli, Khosrow.
Afiliación
  • Farr S; From the Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada (S.F., J.T., K.A.); Molecular Structure and Function Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada (S.F., C.B., M.N., J.T., K.A.); and Department of Ce
  • Baker C; From the Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada (S.F., J.T., K.A.); Molecular Structure and Function Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada (S.F., C.B., M.N., J.T., K.A.); and Department of Ce
  • Naples M; From the Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada (S.F., J.T., K.A.); Molecular Structure and Function Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada (S.F., C.B., M.N., J.T., K.A.); and Department of Ce
  • Taher J; From the Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada (S.F., J.T., K.A.); Molecular Structure and Function Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada (S.F., C.B., M.N., J.T., K.A.); and Department of Ce
  • Iqbal J; From the Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada (S.F., J.T., K.A.); Molecular Structure and Function Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada (S.F., C.B., M.N., J.T., K.A.); and Department of Ce
  • Hussain M; From the Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada (S.F., J.T., K.A.); Molecular Structure and Function Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada (S.F., C.B., M.N., J.T., K.A.); and Department of Ce
  • Adeli K; From the Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada (S.F., J.T., K.A.); Molecular Structure and Function Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada (S.F., C.B., M.N., J.T., K.A.); and Department of Ce
Arterioscler Thromb Vasc Biol ; 35(5): 1092-100, 2015 May.
Article en En | MEDLINE | ID: mdl-25675997
ABSTRACT

OBJECTIVE:

Intestinal overproduction of atherogenic chylomicron particles postprandially is an important component of diabetic dyslipidemia in insulin-resistant states. In addition to enhancing insulin secretion, peripheral glucagon-like peptide-1 (GLP-1) receptor stimulation has the added benefit of reducing this chylomicron overproduction in patients with type 2 diabetes mellitus. Given the presence of central GLP-1 receptors and GLP-1-producing neurons, we assessed whether central GLP-1 exerts an integral layer of neuronal control during the production of these potentially atherogenic particles. APPROACH AND

RESULTS:

Postprandial production of triglyceride-rich lipoproteins was assessed in Syrian hamsters administered a single intracerebroventricular injection of the GLP-1 receptor agonist exendin-4. Intracerebroventricular exendin-4 reduced triglyceride-rich lipoprotein-triglyceride and -apolipoprotein B48 accumulation relative to vehicle-treated controls. This was mirrored by intracerebroventricular MK-0626, an inhibitor of endogenous GLP-1 degradation, and prevented by central exendin9-39, a GLP-1 receptor antagonist. The effects of intracerebroventricular exendin-4 were also lost during peripheral adrenergic receptor and central melanocortin-4 receptor inhibition, achieved using intravenous propranolol and phentolamine and intracerebroventricular HS014, respectively. However, central exendin9-39 did not preclude the effects of peripheral exendin-4 treatment on chylomicron output.

CONCLUSIONS:

Central GLP-1 is a novel regulator of chylomicron production via melanocortin-4 receptors. Our findings point to the relative importance of central accessibility of GLP-1-based therapies and compel further studies examining the status of this brain-gut axis in the development of diabetic dyslipidemia and chylomicron overproduction.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Péptidos / Ponzoñas / Sistema Nervioso Central / Receptores de Glucagón / Diabetes Mellitus Tipo 2 / Péptido 1 Similar al Glucagón / Lipoproteínas Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Arterioscler Thromb Vasc Biol Asunto de la revista: ANGIOLOGIA Año: 2015 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Péptidos / Ponzoñas / Sistema Nervioso Central / Receptores de Glucagón / Diabetes Mellitus Tipo 2 / Péptido 1 Similar al Glucagón / Lipoproteínas Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Arterioscler Thromb Vasc Biol Asunto de la revista: ANGIOLOGIA Año: 2015 Tipo del documento: Article