Your browser doesn't support javascript.
loading
14-3-3-Pred: improved methods to predict 14-3-3-binding phosphopeptides.
Madeira, Fábio; Tinti, Michele; Murugesan, Gavuthami; Berrett, Emily; Stafford, Margaret; Toth, Rachel; Cole, Christian; MacKintosh, Carol; Barton, Geoffrey J.
Afiliación
  • Madeira F; Division of Computational Biology.
  • Tinti M; Division of Cell and Developmental Biology.
  • Murugesan G; Division of Computational Biology.
  • Berrett E; Division of Computational Biology.
  • Stafford M; MRC Protein Phosphorylation Unit.
  • Toth R; Division of Signal Transduction Therapy.
  • Cole C; Division of Computational Biology.
  • MacKintosh C; Division of Cell and Developmental Biology.
  • Barton GJ; Division of Computational Biology, Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK.
Bioinformatics ; 31(14): 2276-83, 2015 Jul 15.
Article en En | MEDLINE | ID: mdl-25735772
MOTIVATION: The 14-3-3 family of phosphoprotein-binding proteins regulates many cellular processes by docking onto pairs of phosphorylated Ser and Thr residues in a constellation of intracellular targets. Therefore, there is a pressing need to develop new prediction methods that use an updated set of 14-3-3-binding motifs for the identification of new 14-3-3 targets and to prioritize the downstream analysis of >2000 potential interactors identified in high-throughput experiments. RESULTS: Here, a comprehensive set of 14-3-3-binding targets from the literature was used to develop 14-3-3-binding phosphosite predictors. Position-specific scoring matrix, support vector machines (SVM) and artificial neural network (ANN) classification methods were trained to discriminate experimentally determined 14-3-3-binding motifs from non-binding phosphopeptides. ANN, position-specific scoring matrix and SVM methods showed best performance for a motif window spanning from -6 to +4 around the binding phosphosite, achieving Matthews correlation coefficient of up to 0.60. Blind prediction showed that all three methods outperform two popular 14-3-3-binding site predictors, Scansite and ELM. The new methods were used for prediction of 14-3-3-binding phosphosites in the human proteome. Experimental analysis of high-scoring predictions in the FAM122A and FAM122B proteins confirms the predictions and suggests the new 14-3-3-predictors will be generally useful. AVAILABILITY AND IMPLEMENTATION: A standalone prediction web server is available at http://www.compbio.dundee.ac.uk/1433pred. Human candidate 14-3-3-binding phosphosites were integrated in ANIA: ANnotation and Integrated Analysis of the 14-3-3 interactome database.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Fosfopéptidos / Fosfoproteínas / Proteómica / Proteínas 14-3-3 Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2015 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Fosfopéptidos / Fosfoproteínas / Proteómica / Proteínas 14-3-3 Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2015 Tipo del documento: Article