Your browser doesn't support javascript.
loading
Leucine-rich repeat kinase 2 deficiency is protective in rhabdomyolysis-induced kidney injury.
Boddu, Ravindra; Hull, Travis D; Bolisetty, Subhashini; Hu, Xianzhen; Moehle, Mark S; Daher, João Paulo Lima; Kamal, Ahmed Ibrahim; Joseph, Reny; George, James F; Agarwal, Anupam; Curtis, Lisa M; West, Andrew B.
Afiliación
  • Boddu R; Department of Medicine.
  • Hull TD; Department of Surgery.
  • Bolisetty S; Department of Medicine.
  • Hu X; Department of Neurology, University of Alabama at Birmingham, Birmingham 35294, USA and.
  • Moehle MS; Department of Neurology, University of Alabama at Birmingham, Birmingham 35294, USA and.
  • Daher JP; Department of Neurology, University of Alabama at Birmingham, Birmingham 35294, USA and.
  • Kamal AI; Department of Medicine.
  • Joseph R; Department of Medicine.
  • George JF; Department of Surgery.
  • Agarwal A; Department of Medicine, Birmingham Veterans Administration Medical Center, Birmingham, Birmingham 35294, USA.
  • Curtis LM; Department of Medicine, Birmingham Veterans Administration Medical Center, Birmingham, Birmingham 35294, USA.
  • West AB; Department of Neurology, University of Alabama at Birmingham, Birmingham 35294, USA and abwest@uab.edu.
Hum Mol Genet ; 24(14): 4078-93, 2015 Jul 15.
Article en En | MEDLINE | ID: mdl-25904107
ABSTRACT
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most common known genetic cause of Parkinson's disease, and LRRK2 is also linked to Crohn's and Hansen's disease. LRRK2 is expressed in many organs in mammals but is particularly abundant in the kidney. We find that LRRK2 protein is predominantly localized to collecting duct cells in the rat kidney, with much lower expression in other kidney cells. While genetic knockout (KO) of LRRK2 expression is well-tolerated in mice and rats, a unique age-dependent pathology develops in the kidney. The cortex and medulla of LRRK2 KO rat kidneys become darkly pigmented in early adulthood, yet aged animals display no overt signs of kidney failure. Accompanying the dark pigment we find substantial macrophage infiltration in LRRK2 KO kidneys, suggesting the presence of chronic inflammation that may predispose to kidney disease. Unexpectedly, the dark kidneys of the LRRK2 KO rats are highly resistant to rhabdomyolysis-induced acute kidney injury compared with wild-type rats. Biochemical profiling of the LRRK2 KO kidneys using immunohistochemistry, proteomic and lipidomic analyses show a massive accumulation of hemoglobin and lipofuscin in renal tubules that account for the pigmentation. The proximal tubules demonstrate a corresponding up-regulation of the cytoprotective protein heme oxygenase-1 (HO-1) which is capable of mitigating acute kidney injury. The unusual kidney pathology of LRRK2 KO rats highlights several novel physiological roles for LRRK2 and provides indirect evidence for HO-1 expression as a protective mechanism in acute kidney injury in LRRK2 deficiency.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Rabdomiólisis / Proteínas Serina-Treonina Quinasas / Enfermedades Renales Tipo de estudio: Etiology_studies Límite: Animals Idioma: En Revista: Hum Mol Genet Asunto de la revista: BIOLOGIA MOLECULAR / GENETICA MEDICA Año: 2015 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Rabdomiólisis / Proteínas Serina-Treonina Quinasas / Enfermedades Renales Tipo de estudio: Etiology_studies Límite: Animals Idioma: En Revista: Hum Mol Genet Asunto de la revista: BIOLOGIA MOLECULAR / GENETICA MEDICA Año: 2015 Tipo del documento: Article