Your browser doesn't support javascript.
loading
A transfer function approach for predicting rare cell capture microdevice performance.
Smith, James P; Kirby, Brian J.
Afiliación
  • Smith JP; Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, 14853, USA.
Biomed Microdevices ; 17(3): 9956, 2015.
Article en En | MEDLINE | ID: mdl-25971361
ABSTRACT
Rare cells have the potential to improve our understanding of biological systems and the treatment of a variety of diseases; each of those applications requires a different balance of throughput, capture efficiency, and sample purity. Those challenges, coupled with the limited availability of patient samples and the costs of repeated design iterations, motivate the need for a robust set of engineering tools to optimize application-specific geometries. Here, we present a transfer function approach for predicting rare cell capture in microfluidic obstacle arrays. Existing computational fluid dynamics (CFD) tools are limited to simulating a subset of these arrays, owing to computational costs; a transfer function leverages the deterministic nature of cell transport in these arrays, extending limited CFD simulations into larger, more complicated geometries. We show that the transfer function approximation matches a full CFD simulation within 1.34 %, at a 74-fold reduction in computational cost. Taking advantage of these computational savings, we apply the transfer function simulations to simulate reversing array geometries that generate a "notch filter" effect, reducing the collision frequency of cells outside of a specified diameter range. We adapt the transfer function to study the effect of off-design boundary conditions (such as a clogged inlet in a microdevice) on overall performance. Finally, we have validated the transfer function's predictions for lateral displacement within the array using particle tracking and polystyrene beads in a microdevice.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Fenómenos Fisiológicos Celulares / Separación Celular / Diseño Asistido por Computadora / Dispositivos Laboratorio en un Chip / Citometría de Flujo / Modelos Biológicos Tipo de estudio: Diagnostic_studies / Prognostic_studies / Risk_factors_studies Límite: Animals / Humans Idioma: En Revista: Biomed Microdevices Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2015 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Fenómenos Fisiológicos Celulares / Separación Celular / Diseño Asistido por Computadora / Dispositivos Laboratorio en un Chip / Citometría de Flujo / Modelos Biológicos Tipo de estudio: Diagnostic_studies / Prognostic_studies / Risk_factors_studies Límite: Animals / Humans Idioma: En Revista: Biomed Microdevices Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2015 Tipo del documento: Article País de afiliación: Estados Unidos