Your browser doesn't support javascript.
loading
Computational prediction of miRNAs and their targets in Phaseolus vulgaris using simple sequence repeat signatures.
Nithin, Chandran; Patwa, Nisha; Thomas, Amal; Bahadur, Ranjit Prasad; Basak, Jolly.
Afiliación
  • Nithin C; Computational Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India. nithin_aneesh@iitkgp.ac.in.
  • Patwa N; Department of Biotechnology, Visva-Bharati, Santiniketan, 731235, India. nisha.patwa90@gmail.com.
  • Thomas A; Computational Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India. amalthomas111@iitkgp.ac.in.
  • Bahadur RP; Computational Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India. r.bahadur@hijli.iitkgp.ernet.in.
  • Basak J; Department of Biotechnology, Visva-Bharati, Santiniketan, 731235, India. jolly.basak@visva-bharati.ac.in.
BMC Plant Biol ; 15: 140, 2015 Jun 12.
Article en En | MEDLINE | ID: mdl-26067253
BACKGROUND: MicroRNAs (miRNAs) are endogenous, noncoding, short RNAs directly involved in regulating gene expression at the post-transcriptional level. In spite of immense importance, limited information of P. vulgaris miRNAs and their expression patterns prompted us to identify new miRNAs in P. vulgaris by computational methods. Besides conventional approaches, we have used the simple sequence repeat (SSR) signatures as one of the prediction parameter. Moreover, for all other parameters including normalized Shannon entropy, normalized base pairing index and normalized base-pair distance, instead of taking a fixed cut-off value, we have used 99% probability range derived from the available data. RESULTS: We have identified 208 mature miRNAs in P. vulgaris belonging to 118 families, of which 201 are novel. 97 of the predicted miRNAs in P. vulgaris were validated with the sequencing data obtained from the small RNA sequencing of P. vulgaris. Randomly selected predicted miRNAs were also validated using qRT-PCR. A total of 1305 target sequences were identified for 130 predicted miRNAs. Using 80% sequence identity cut-off, proteins coded by 563 targets were identified. The computational method developed in this study was also validated by predicting 229 miRNAs of A. thaliana and 462 miRNAs of G. max, of which 213 for A. thaliana and 397 for G. max are existing in miRBase 20. CONCLUSIONS: There is no universal SSR that is conserved among all precursors of Viridiplantae, but conserved SSR exists within a miRNA family and is used as a signature in our prediction method. Prediction of known miRNAs of A. thaliana and G. max validates the accuracy of our method. Our findings will contribute to the present knowledge of miRNAs and their targets in P. vulgaris. This computational method can be applied to any species of Viridiplantae for the successful prediction of miRNAs and their targets.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Repeticiones de Microsatélite / Biología Computacional / Perfilación de la Expresión Génica / Phaseolus / MicroARNs Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: BMC Plant Biol Asunto de la revista: BOTANICA Año: 2015 Tipo del documento: Article País de afiliación: India

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Repeticiones de Microsatélite / Biología Computacional / Perfilación de la Expresión Génica / Phaseolus / MicroARNs Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: BMC Plant Biol Asunto de la revista: BOTANICA Año: 2015 Tipo del documento: Article País de afiliación: India