Your browser doesn't support javascript.
loading
Modulation of error-sensitivity during a prism adaptation task in people with cerebellar degeneration.
Hanajima, Ritsuko; Shadmehr, Reza; Ohminami, Shinya; Tsutsumi, Ryosuke; Shirota, Yuichiro; Shimizu, Takahiro; Tanaka, Nobuyuki; Terao, Yasuo; Tsuji, Shoji; Ugawa, Yoshikazu; Uchimura, Motoaki; Inoue, Masato; Kitazawa, Shigeru.
Afiliación
  • Hanajima R; Department of Neurology, University of Tokyo Hospital, Tokyo, Japan; Department of Neurology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan; hanajima-tky@umin.ac.jp.
  • Shadmehr R; Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland; and.
  • Ohminami S; Division of Neuroscience, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan;
  • Tsutsumi R; Division of Neuroscience, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan; Department of Neurology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan;
  • Shirota Y; Division of Neuroscience, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan;
  • Shimizu T; Division of Neuroscience, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan;
  • Tanaka N; Division of Neuroscience, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan;
  • Terao Y; Department of Neurology, University of Tokyo Hospital, Tokyo, Japan; Division of Neuroscience, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan;
  • Tsuji S; Department of Neurology, University of Tokyo Hospital, Tokyo, Japan; Division of Neuroscience, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan;
  • Ugawa Y; Department of Neurology, Fukushima Medical University, Fukushima, Japan.
  • Uchimura M; Dynamic Brain Network Laboratory, Graduate School of Frontier Bioscience, Osaka University, Suita, Osaka, Japan; Department of Brain Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan;
  • Inoue M; Department of Neurophysiology, Juntendo University Graduate School of Medicine, Tokyo, Japan;
  • Kitazawa S; Dynamic Brain Network Laboratory, Graduate School of Frontier Bioscience, Osaka University, Suita, Osaka, Japan; Department of Brain Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan; Department of Neurophysiology, Juntendo University Graduate School of Medicine, Tokyo,
J Neurophysiol ; 114(4): 2460-71, 2015 Oct.
Article en En | MEDLINE | ID: mdl-26311179
ABSTRACT
Cerebellar damage can profoundly impair human motor adaptation. For example, if reaching movements are perturbed abruptly, cerebellar damage impairs the ability to learn from the perturbation-induced errors. Interestingly, if the perturbation is imposed gradually over many trials, people with cerebellar damage may exhibit improved adaptation. However, this result is controversial, since the differential effects of gradual vs. abrupt protocols have not been observed in all studies. To examine this question, we recruited patients with pure cerebellar ataxia due to cerebellar cortical atrophy (n = 13) and asked them to reach to a target while viewing the scene through wedge prisms. The prisms were computer controlled, making it possible to impose the full perturbation abruptly in one trial, or build up the perturbation gradually over many trials. To control visual feedback, we employed shutter glasses that removed visual feedback during the reach, allowing us to measure trial-by-trial learning from error (termed error-sensitivity), and trial-by-trial decay of motor memory (termed forgetting). We found that the patients benefited significantly from the gradual protocol, improving their performance with respect to the abrupt protocol by exhibiting smaller errors during the exposure block, and producing larger aftereffects during the postexposure block. Trial-by-trial analysis suggested that this improvement was due to increased error-sensitivity in the gradual protocol. Therefore, cerebellar patients exhibited an improved ability to learn from error if they experienced those errors gradually. This improvement coincided with increased error-sensitivity and was present in both groups of subjects, suggesting that control of error-sensitivity may be spared despite cerebellar damage.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Desempeño Psicomotor / Percepción Visual / Adaptación Fisiológica / Adaptación Psicológica / Degeneraciones Espinocerebelosas / Ataxia Cerebelosa Tipo de estudio: Diagnostic_studies Límite: Adult / Aged / Female / Humans / Male / Middle aged Idioma: En Revista: J Neurophysiol Año: 2015 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Desempeño Psicomotor / Percepción Visual / Adaptación Fisiológica / Adaptación Psicológica / Degeneraciones Espinocerebelosas / Ataxia Cerebelosa Tipo de estudio: Diagnostic_studies Límite: Adult / Aged / Female / Humans / Male / Middle aged Idioma: En Revista: J Neurophysiol Año: 2015 Tipo del documento: Article