Your browser doesn't support javascript.
loading
SNF-10 connects male-derived signals to the onset of sperm motility in C. elegans.
Fenker, Kristin E; Stanfield, Gillian M.
Afiliación
  • Fenker KE; Department of Human Genetics; University of Utah ; Salt Lake City, UT USA.
  • Stanfield GM; Department of Human Genetics; University of Utah ; Salt Lake City, UT USA.
Worm ; 4(1): e1003002, 2015.
Article en En | MEDLINE | ID: mdl-26430556
ABSTRACT
Sperm from the nematode C. elegans gain motility during a process termed activation, which they initiate in response to specific environmental signals. During this process, a number of subcellular rearrangements occur, culminating in an altered morphology that allows the cell to crawl toward and fertilize oocytes. Both hermaphrodites and males produce sperm, and redundant, sex-biased pathways regulate the sperm's activation. The male-derived signal for sperm activation involves TRY-5, a trypsin-like serine protease in seminal fluid, but until recently it was unknown what factors were active downstream of TRY-5. In our recent paper, we reported the discovery of SNF-10, a solute carrier 6 (SLC6) family protein that is expressed by sperm and connects the activation signal to changes in sperm morphology and, ultimately, the onset of motility. Here, we review our recent results, focusing on potential models for SNF-10's function in C. elegans, and additionally discuss the role SLC6 transporters may play in male reproductive biology from invertebrates to mammals.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Worm Año: 2015 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Worm Año: 2015 Tipo del documento: Article