Your browser doesn't support javascript.
loading
Sunflower (Helianthus annuus) fatty acid synthase complex: ß-hydroxyacyl-[acyl carrier protein] dehydratase genes.
González-Thuillier, Irene; Venegas-Calerón, Mónica; Sánchez, Rosario; Garcés, Rafael; von Wettstein-Knowles, Penny; Martínez-Force, Enrique.
Afiliación
  • González-Thuillier I; Instituto de la Grasa (CSIC), Edificio 46, Campus Universitario Pablo de Olavide, Carretera de Utrera Km 1., 41013, Seville, Spain.
  • Venegas-Calerón M; Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, AL5 2JQ, Herts, UK.
  • Sánchez R; Instituto de la Grasa (CSIC), Edificio 46, Campus Universitario Pablo de Olavide, Carretera de Utrera Km 1., 41013, Seville, Spain. mvc@ig.csic.es.
  • Garcés R; Instituto de la Grasa (CSIC), Edificio 46, Campus Universitario Pablo de Olavide, Carretera de Utrera Km 1., 41013, Seville, Spain.
  • von Wettstein-Knowles P; Instituto de la Grasa (CSIC), Edificio 46, Campus Universitario Pablo de Olavide, Carretera de Utrera Km 1., 41013, Seville, Spain.
  • Martínez-Force E; Biology Department, Copenhagen University, Ole Maaloees Vej 5, 2200, Copenhagen N, Denmark.
Planta ; 243(2): 397-410, 2016 Feb.
Article en En | MEDLINE | ID: mdl-26433735
ABSTRACT
MAIN

CONCLUSION:

Two sunflower hydroxyacyl-[acyl carrier protein] dehydratases evolved into two different isoenzymes showing distinctive expression levels and kinetics' efficiencies. ß-Hydroxyacyl-[acyl carrier protein (ACP)]-dehydratase (HAD) is a component of the type II fatty acid synthase complex involved in 'de novo' fatty acid biosynthesis in plants. This complex, formed by four intraplastidial proteins, is responsible for the sequential condensation of two-carbon units, leading to 16- and 18-C acyl-ACP. HAD dehydrates 3-hydroxyacyl-ACP generating trans-2-enoyl-ACP. With the aim of a further understanding of fatty acid biosynthesis in sunflower (Helianthus annuus) seeds, two ß-hydroxyacyl-[ACP] dehydratase genes have been cloned from developing seeds, HaHAD1 (GenBank HM044767) and HaHAD2 (GenBank GU595454). Genomic DNA gel blot analyses suggest that both are single copy genes. Differences in their expression patterns across plant tissues were detected. Higher levels of HaHAD2 in the initial stages of seed development inferred its key role in seed storage fatty acid synthesis. That HaHAD1 expression levels remained constant across most tissues suggest a housekeeping function. Heterologous expression of these genes in E. coli confirmed both proteins were functional and able to interact with the bacterial complex 'in vivo'. The large increase of saturated fatty acids in cells expressing HaHAD1 and HaHAD2 supports the idea that these HAD genes are closely related to the E. coli FabZ gene. The proposed three-dimensional models of HaHAD1 and HaHAD2 revealed differences at the entrance to the catalytic tunnel attributable to Phe166/Val1159, respectively. HaHAD1 F166V was generated to study the function of this residue. The 'in vitro' enzymatic characterization of the three HAD proteins demonstrated all were active, with the mutant having intermediate K m and V max values to the wild-type proteins.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Proteínas de Plantas / Ácido Graso Sintasas / Helianthus / Hidroliasas Idioma: En Revista: Planta Año: 2016 Tipo del documento: Article País de afiliación: España

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Proteínas de Plantas / Ácido Graso Sintasas / Helianthus / Hidroliasas Idioma: En Revista: Planta Año: 2016 Tipo del documento: Article País de afiliación: España