Your browser doesn't support javascript.
loading
Three-Dimensional Vascular Network Assembly From Diabetic Patient-Derived Induced Pluripotent Stem Cells.
Chan, Xin Yi; Black, Rebecca; Dickerman, Kayla; Federico, Joseph; Lévesque, Mathieu; Mumm, Jeff; Gerecht, Sharon.
Afiliación
  • Chan XY; From the Department of Chemical and Biomolecular Engineering, Institute for NanoBioTechnology (X.Y.C., R.B., K.D., J.F., S.G.) and Department of Materials Science and Engineering (S.G.), Johns Hopkins University, Baltimore, MD; and Department of Ophthalmology, Wilmer Eye Institute (M.L., J.M.) and M
  • Black R; From the Department of Chemical and Biomolecular Engineering, Institute for NanoBioTechnology (X.Y.C., R.B., K.D., J.F., S.G.) and Department of Materials Science and Engineering (S.G.), Johns Hopkins University, Baltimore, MD; and Department of Ophthalmology, Wilmer Eye Institute (M.L., J.M.) and M
  • Dickerman K; From the Department of Chemical and Biomolecular Engineering, Institute for NanoBioTechnology (X.Y.C., R.B., K.D., J.F., S.G.) and Department of Materials Science and Engineering (S.G.), Johns Hopkins University, Baltimore, MD; and Department of Ophthalmology, Wilmer Eye Institute (M.L., J.M.) and M
  • Federico J; From the Department of Chemical and Biomolecular Engineering, Institute for NanoBioTechnology (X.Y.C., R.B., K.D., J.F., S.G.) and Department of Materials Science and Engineering (S.G.), Johns Hopkins University, Baltimore, MD; and Department of Ophthalmology, Wilmer Eye Institute (M.L., J.M.) and M
  • Lévesque M; From the Department of Chemical and Biomolecular Engineering, Institute for NanoBioTechnology (X.Y.C., R.B., K.D., J.F., S.G.) and Department of Materials Science and Engineering (S.G.), Johns Hopkins University, Baltimore, MD; and Department of Ophthalmology, Wilmer Eye Institute (M.L., J.M.) and M
  • Mumm J; From the Department of Chemical and Biomolecular Engineering, Institute for NanoBioTechnology (X.Y.C., R.B., K.D., J.F., S.G.) and Department of Materials Science and Engineering (S.G.), Johns Hopkins University, Baltimore, MD; and Department of Ophthalmology, Wilmer Eye Institute (M.L., J.M.) and M
  • Gerecht S; From the Department of Chemical and Biomolecular Engineering, Institute for NanoBioTechnology (X.Y.C., R.B., K.D., J.F., S.G.) and Department of Materials Science and Engineering (S.G.), Johns Hopkins University, Baltimore, MD; and Department of Ophthalmology, Wilmer Eye Institute (M.L., J.M.) and M
Arterioscler Thromb Vasc Biol ; 35(12): 2677-85, 2015 Dec.
Article en En | MEDLINE | ID: mdl-26449749
ABSTRACT

OBJECTIVE:

In diabetics, hyperglycemia results in deficient endothelial progenitors and cells, leading to cardiovascular complications. We aim to engineer 3-dimensional (3D) vascular networks in synthetic hydrogels from type 1 diabetes mellitus (T1D) patient-derived human-induced pluripotent stem cells (hiPSCs), to serve as a transformative autologous vascular therapy for diabetic patients. APPROACH AND

RESULTS:

We validated and optimized an adherent, feeder-free differentiation procedure to derive early vascular cells (EVCs) with high portions of vascular endothelial cadherin-positive cells from hiPSCs. We demonstrate similar differentiation efficiency from hiPSCs derived from healthy donor and patients with T1D. T1D-hiPSC-derived vascular endothelial cadherin-positive cells can mature to functional endothelial cells-expressing mature markers von Willebrand factor and endothelial nitric oxide synthase are capable of lectin binding and acetylated low-density lipoprotein uptake, form cords in Matrigel and respond to tumor necrosis factor-α. When embedded in engineered hyaluronic acid hydrogels, T1D-EVCs undergo morphogenesis and assemble into 3D networks. When encapsulated in a novel hypoxia-inducible hydrogel, T1D-EVCs respond to low oxygen and form 3D networks. As xenografts, T1D-EVCs incorporate into developing zebrafish vasculature.

CONCLUSIONS:

Using our robust protocol, we can direct efficient differentiation of T1D-hiPSC to EVCs. Early endothelial cells derived from T1D-hiPSC are functional when mature. T1D-EVCs self-assembled into 3D networks when embedded in hyaluronic acid and hypoxia-inducible hydrogels. The capability of T1D-EVCs to assemble into 3D networks in engineered matrices and to respond to a hypoxic microenvironment is a significant advancement for autologous vascular therapy in diabetic patients and has broad importance for tissue engineering.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Diferenciación Celular / Diabetes Mellitus Tipo 1 / Células Madre Pluripotentes Inducidas / Células Progenitoras Endoteliales / Neovascularización Patológica Tipo de estudio: Guideline / Observational_studies Límite: Animals / Humans Idioma: En Revista: Arterioscler Thromb Vasc Biol Asunto de la revista: ANGIOLOGIA Año: 2015 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Diferenciación Celular / Diabetes Mellitus Tipo 1 / Células Madre Pluripotentes Inducidas / Células Progenitoras Endoteliales / Neovascularización Patológica Tipo de estudio: Guideline / Observational_studies Límite: Animals / Humans Idioma: En Revista: Arterioscler Thromb Vasc Biol Asunto de la revista: ANGIOLOGIA Año: 2015 Tipo del documento: Article