Your browser doesn't support javascript.
loading
A new network representation of the metabolism to detect chemical transformation modules.
Sorokina, Maria; Medigue, Claudine; Vallenet, David.
Afiliación
  • Sorokina M; Direction des Sciences du Vivant, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Institut de Génomique, Genoscope, Laboratoire d'Analyses Bioinformatiques pour la Génomique et le Métabolisme, 2 rue Gaston Crémieux, Evry, 91057, France. msorokina@genoscope.cns.fr.
  • Medigue C; CNRS-UMR8030, 2 rue Gaston Crémieux, Evry, 91057, France. msorokina@genoscope.cns.fr.
  • Vallenet D; UEVE, Université d'Evry Val d'Essonne, Boulevard François Mitterrand, Evry, 91057, France. msorokina@genoscope.cns.fr.
BMC Bioinformatics ; 16: 385, 2015 Nov 14.
Article en En | MEDLINE | ID: mdl-26573681
BACKGROUND: Metabolism is generally modeled by directed networks where nodes represent reactions and/or metabolites. In order to explore metabolic pathway conservation and divergence among organisms, previous studies were based on graph alignment to find similar pathways. Few years ago, the concept of chemical transformation modules, also called reaction modules, was introduced and correspond to sequences of chemical transformations which are conserved in metabolism. We propose here a novel graph representation of the metabolic network where reactions sharing a same chemical transformation type are grouped in Reaction Molecular Signatures (RMS). RESULTS: RMS were automatically computed for all reactions and encode changes in atoms and bonds. A reaction network containing all available metabolic knowledge was then reduced by an aggregation of reaction nodes and edges to obtain a RMS network. Paths in this network were explored and a substantial number of conserved chemical transformation modules was detected. Furthermore, this graph-based formalism allows us to define several path scores reflecting different biological conservation meanings. These scores are significantly higher for paths corresponding to known metabolic pathways and were used conjointly to build association rules that should predict metabolic pathway types like biosynthesis or degradation. CONCLUSIONS: This representation of metabolism in a RMS network offers new insights to capture relevant metabolic contexts. Furthermore, along with genomic context methods, it should improve the detection of gene clusters corresponding to new metabolic pathways.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Redes y Vías Metabólicas / Modelos Químicos Tipo de estudio: Prognostic_studies Idioma: En Revista: BMC Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2015 Tipo del documento: Article País de afiliación: Francia

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Redes y Vías Metabólicas / Modelos Químicos Tipo de estudio: Prognostic_studies Idioma: En Revista: BMC Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2015 Tipo del documento: Article País de afiliación: Francia