Your browser doesn't support javascript.
loading
Magnetic Propulsion of Microswimmers with DNA-Based Flagellar Bundles.
Maier, Alexander M; Weig, Cornelius; Oswald, Peter; Frey, Erwin; Fischer, Peer; Liedl, Tim.
Afiliación
  • Maier AM; Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität , Geschwister-Scholl-Platz 1, 80539 München, Germany.
  • Weig C; Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München , Theresienstraße 37, 80333 Munich, Germany.
  • Oswald P; Max Planck Institute for Intelligent Systems , Heisenbergstrasse 3, 70569 Stuttgart, Germany.
  • Frey E; Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München , Theresienstraße 37, 80333 Munich, Germany.
  • Fischer P; Max Planck Institute for Intelligent Systems , Heisenbergstrasse 3, 70569 Stuttgart, Germany.
  • Liedl T; Institut für Physikalische Chemie, Universität Stuttgart , Pfaffenwaldring 55, 70569 Stuttgart, Germany.
Nano Lett ; 16(2): 906-10, 2016 Feb 10.
Article en En | MEDLINE | ID: mdl-26821214
We show that DNA-based self-assembly can serve as a general and flexible tool to construct artificial flagella of several micrometers in length and only tens of nanometers in diameter. By attaching the DNA flagella to biocompatible magnetic microparticles, we provide a proof of concept demonstration of hybrid structures that, when rotated in an external magnetic field, propel by means of a flagellar bundle, similar to self-propelling peritrichous bacteria. Our theoretical analysis predicts that flagellar bundles that possess a length-dependent bending stiffness should exhibit a superior swimming speed compared to swimmers with a single appendage. The DNA self-assembly method permits the realization of these improved flagellar bundles in good agreement with our quantitative model. DNA flagella with well-controlled shape could fundamentally increase the functionality of fully biocompatible nanorobots and extend the scope and complexity of active materials.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Materiales Biocompatibles / ADN / Nanopartículas de Magnetita Tipo de estudio: Prognostic_studies Idioma: En Revista: Nano Lett Año: 2016 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Materiales Biocompatibles / ADN / Nanopartículas de Magnetita Tipo de estudio: Prognostic_studies Idioma: En Revista: Nano Lett Año: 2016 Tipo del documento: Article País de afiliación: Alemania