Cavity-enhanced absorption spectroscopy with a ps-pulsed UV laser for sensitive, high-speed measurements in a shock tube.
Opt Express
; 24(1): 308-18, 2016 Jan 11.
Article
en En
| MEDLINE
| ID: mdl-26832262
We report the first application of cavity-enhanced absorption spectroscopy (CEAS) with a ps-pulsed UV laser for sensitive and rapid gaseous species time-history measurements in a transient environment (in this study, a shock tube). The broadband nature of the ps pulses enabled instantaneous coupling of the laser beam into roughly a thousand cavity modes, which grants excellent immunity to laser-cavity coupling noise in environments with heavy vibrations, even with an on-axis alignment. In this proof-of-concept experiment, we demonstrated an absorption gain of 49, which improved the minimum detectable absorbance by ~20 compared to the conventional single-pass strategy at similar experimental conditions. For absorption measurements behind reflected shock waves, an effective time-resolution of ~2 µs was achieved, which enabled time-resolved observations of transient phenomena, such as the vibrational relaxation of O(2) demonstrated here. The substantial improvement in detection sensitivity, together with microsecond measurement resolution implies excellent potential for studies of transient physical and chemical processes in nonequilibrium situations, particularly via measurements of weak absorptions of trace species in dilute reactive systems.
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Tipo de estudio:
Diagnostic_studies
Idioma:
En
Revista:
Opt Express
Asunto de la revista:
OFTALMOLOGIA
Año:
2016
Tipo del documento:
Article