Your browser doesn't support javascript.
loading
Membrane-binding properties of gating modifier and pore-blocking toxins: Membrane interaction is not a prerequisite for modification of channel gating.
Deplazes, Evelyne; Henriques, Sónia Troeira; Smith, Jennifer J; King, Glenn F; Craik, David J; Mark, Alan E; Schroeder, Christina I.
Afiliación
  • Deplazes E; Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia. Electronic address: e.deplazes@uq.edu.au.
  • Henriques ST; Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia.
  • Smith JJ; Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia.
  • King GF; Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia.
  • Craik DJ; Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia.
  • Mark AE; School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia.
  • Schroeder CI; Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia. Electronic address: c.schroeder@imb.uq.edu.au.
Biochim Biophys Acta ; 1858(4): 872-82, 2016 Apr.
Article en En | MEDLINE | ID: mdl-26850736
Many venom peptides are potent and selective inhibitors of voltage-gated ion channels, including channels that are validated therapeutic targets for treatment of a wide range of human diseases. However, the development of novel venom-peptide-based therapeutics requires an understanding of their mechanism of action. In the case of voltage-gated ion channels, venom peptides act either as pore blockers that bind to the extracellular side of the channel pore or gating modifiers that bind to one or more of the membrane-embedded voltage sensor domains. In the case of gating modifiers, it has been debated whether the peptide must partition into the membrane to reach its binding site. In this study, we used surface plasmon resonance, fluorescence spectroscopy and molecular dynamics to directly compare the lipid-binding properties of two gating modifiers (µ-TRTX-Hd1a and ProTx-I) and two pore blockers (ShK and KIIIA). Only ProTx-I was found to bind to model membranes. Our results provide further evidence that the ability to insert into the lipid bilayer is not a requirement to be a gating modifier. In addition, we characterised the surface of ProTx-I that mediates its interaction with neutral and anionic phospholipid membranes and show that it preferentially interacts with anionic lipids.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Péptidos / Venenos de Araña / Membranas Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Biochim Biophys Acta Año: 2016 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Péptidos / Venenos de Araña / Membranas Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Biochim Biophys Acta Año: 2016 Tipo del documento: Article