Your browser doesn't support javascript.
loading
Coupling spatial segregation with synthetic circuits to control bacterial survival.
Huang, Shuqiang; Lee, Anna Jisu; Tsoi, Ryan; Wu, Feilun; Zhang, Ying; Leong, Kam W; You, Lingchong.
Afiliación
  • Huang S; Department of Biomedical Engineering, Duke University, Durham, NC, USA.
  • Lee AJ; Department of Biomedical Engineering, Duke University, Durham, NC, USA.
  • Tsoi R; Department of Biomedical Engineering, Duke University, Durham, NC, USA.
  • Wu F; Department of Biomedical Engineering, Duke University, Durham, NC, USA.
  • Zhang Y; Department of Biomedical Engineering, Columbia University, New York, NY, USA.
  • Leong KW; Department of Biomedical Engineering, Columbia University, New York, NY, USA.
  • You L; Department of Biomedical Engineering, Duke University, Durham, NC, USA Center for Genomic and Computational Biology, Duke University, Durham, NC, USA you@duke.edu.
Mol Syst Biol ; 12(2): 859, 2016 Feb 29.
Article en En | MEDLINE | ID: mdl-26925805
ABSTRACT
Engineered bacteria have great potential for medical and environmental applications. Fulfilling this potential requires controllability over engineered behaviors and scalability of the engineered systems. Here, we present a platform technology, microbial swarmbot, which employs spatial arrangement to control the growth dynamics of engineered bacteria. As a proof of principle, we demonstrated a safeguard strategy to prevent unintended bacterial proliferation. In particular, we adopted several synthetic gene circuits to program collective survival in Escherichia coli the engineered bacteria could only survive when present at sufficiently high population densities. When encapsulated by permeable membranes, these bacteria can sense the local environment and respond accordingly. The cells inside the microbial swarmbot capsules will survive due to their high densities. Those escaping from a capsule, however, will be killed due to a decrease in their densities. We demonstrate that this design concept is modular and readily generalizable. Our work lays the foundation for engineering integrated and programmable control of hybrid biological-material systems for diverse applications.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Regulación Bacteriana de la Expresión Génica / Escherichia coli / Redes Reguladoras de Genes Idioma: En Revista: Mol Syst Biol Asunto de la revista: BIOLOGIA MOLECULAR / BIOTECNOLOGIA Año: 2016 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Regulación Bacteriana de la Expresión Génica / Escherichia coli / Redes Reguladoras de Genes Idioma: En Revista: Mol Syst Biol Asunto de la revista: BIOLOGIA MOLECULAR / BIOTECNOLOGIA Año: 2016 Tipo del documento: Article País de afiliación: Estados Unidos