Your browser doesn't support javascript.
loading
Thermal resistance at a solid/superfluid helium interface.
Ramiere, Aymeric; Volz, Sebastian; Amrit, Jay.
Afiliación
  • Ramiere A; Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur, LIMSI-CNRS UPR 3251, Université Paris-Sud, Rue John von Neumann, 91405 Orsay, France.
  • Volz S; Laboratoire Énergétique Moléculaire et Macroscopique Combustion, EM2C-CNRS UPR 288, École Centrale Paris, Grande voie des Vignes, 92295 Chatenay-Malabry, France.
  • Amrit J; Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur, LIMSI-CNRS UPR 3251, Université Paris-Sud, Rue John von Neumann, 91405 Orsay, France.
Nat Mater ; 15(5): 512-6, 2016 05.
Article en En | MEDLINE | ID: mdl-26928639
ABSTRACT
Kapitza in 1941 discovered that heat flowing across a solid in contact with superfluid helium (<2 K) encounters a strong thermal resistance at the interface. Khalatnikov demonstrated theoretically that this constitutes a general phenomenon related to all interfaces at all temperatures, given the dependence of heat transmission on the acoustic impedance (sound velocity × density) of each medium. For the solid/superfluid interface, the measured transmission of heat is almost one hundred times stronger than the Khalatnikov prediction. This discrepancy could be intuitively attributed to diffuse scattering of phonons at the interface but, despite several attempts, a detailed quantitative comparison between theoretical and experimental findings to explain the occurrence of scattering and its contribution to heat transmission had been lacking. Here we show that when the thermal wavelength λ of phonons of the less dense medium (liquid (4)He) becomes comparable to the r.m.s. surface roughness σ, the heat flux crossing the interface is amplified; in particular when σ ≈ 0.33λ, a spatial resonant mechanism occurs, as proposed by Adamenko and Fuks. We used a silicon single crystal whose surface roughness was controlled and characterized. The thermal boundary resistance measurements were performed from 0.4 to 2 K at different superfluid pressures ranging from saturated vapour pressure (SVP) to above (4)He solidification, to eliminate all hypothetical artefact mechanisms. Our results demonstrate the physical conditions necessary for resonant phonon scattering to occur at all interfaces, and therefore constitute a benchmark in the design of nanoscale devices for heat monitoring.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Nat Mater Asunto de la revista: CIENCIA / QUIMICA Año: 2016 Tipo del documento: Article País de afiliación: Francia

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Nat Mater Asunto de la revista: CIENCIA / QUIMICA Año: 2016 Tipo del documento: Article País de afiliación: Francia