Your browser doesn't support javascript.
loading
Dynamics inside the cancer cell attractor reveal cell heterogeneity, limits of stability, and escape.
Li, Qin; Wennborg, Anders; Aurell, Erik; Dekel, Erez; Zou, Jie-Zhi; Xu, Yuting; Huang, Sui; Ernberg, Ingemar.
Afiliación
  • Li Q; Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden;
  • Wennborg A; Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden;
  • Aurell E; Alba Nova University Center, Royal Institute of Technology, SE-10691 Stockholm, Sweden;
  • Dekel E; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel;
  • Zou JZ; Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden;
  • Xu Y; Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205-2179;
  • Huang S; Institute of Systems Biology, Seattle, WA 98109.
  • Ernberg I; Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden; ingemar.ernberg@ki.se.
Proc Natl Acad Sci U S A ; 113(10): 2672-7, 2016 Mar 08.
Article en En | MEDLINE | ID: mdl-26929366
ABSTRACT
The observed intercellular heterogeneity within a clonal cell population can be mapped as dynamical states clustered around an attractor point in gene expression space, owing to a balance between homeostatic forces and stochastic fluctuations. These dynamics have led to the cancer cell attractor conceptual model, with implications for both carcinogenesis and new therapeutic concepts. Immortalized and malignant EBV-carrying B-cell lines were used to explore this model and characterize the detailed structure of cell attractors. Any subpopulation selected from a population of cells repopulated the whole original basin of attraction within days to weeks. Cells at the basin edges were unstable and prone to apoptosis. Cells continuously changed states within their own attractor, thus driving the repopulation, as shown by fluorescent dye tracing. Perturbations of key regulatory genes induced a jump to a nearby attractor. Using the Fokker-Planck equation, this cell population behavior could be described as two virtual, opposing influences on the cells one attracting toward the center and the other promoting diffusion in state space (noise). Transcriptome analysis suggests that these forces result from high-dimensional dynamics of the gene regulatory network. We propose that they can be generalized to all cancer cell populations and represent intrinsic behaviors of tumors, offering a previously unidentified characteristic for studying cancer.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Algoritmos / Neprilisina / Receptores de IgE / Molécula 1 de Adhesión Intercelular / Perfilación de la Expresión Génica / Modelos Genéticos Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2016 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Algoritmos / Neprilisina / Receptores de IgE / Molécula 1 de Adhesión Intercelular / Perfilación de la Expresión Génica / Modelos Genéticos Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2016 Tipo del documento: Article