Your browser doesn't support javascript.
loading
Bayesian Sparse Regression Analysis Documents the Diversity of Spinal Inhibitory Interneurons.
Gabitto, Mariano I; Pakman, Ari; Bikoff, Jay B; Abbott, L F; Jessell, Thomas M; Paninski, Liam.
Afiliación
  • Gabitto MI; Department of Neuroscience, Columbia University, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Kavli Institute for Brain Science, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10032, USA. Electronic address
  • Pakman A; Department of Statistics and Grossman Center for the Statistics of Mind, Columbia University, New York, NY 10027, USA.
  • Bikoff JB; Department of Neuroscience, Columbia University, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Kavli Institute for Brain Science, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10032, USA.
  • Abbott LF; Department of Neuroscience, Columbia University, New York, NY 10032, USA; Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA.
  • Jessell TM; Department of Neuroscience, Columbia University, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Kavli Institute for Brain Science, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10032, USA.
  • Paninski L; Department of Neuroscience, Columbia University, New York, NY 10032, USA; Department of Statistics and Grossman Center for the Statistics of Mind, Columbia University, New York, NY 10027, USA. Electronic address: liam@stat.columbia.edu.
Cell ; 165(1): 220-233, 2016 Mar 24.
Article en En | MEDLINE | ID: mdl-26949187
Documenting the extent of cellular diversity is a critical step in defining the functional organization of tissues and organs. To infer cell-type diversity from partial or incomplete transcription factor expression data, we devised a sparse Bayesian framework that is able to handle estimation uncertainty and can incorporate diverse cellular characteristics to optimize experimental design. Focusing on spinal V1 inhibitory interneurons, for which the spatial expression of 19 transcription factors has been mapped, we infer the existence of ~50 candidate V1 neuronal types, many of which localize in compact spatial domains in the ventral spinal cord. We have validated the existence of inferred cell types by direct experimental measurement, establishing this Bayesian framework as an effective platform for cell-type characterization in the nervous system and elsewhere.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Médula Espinal / Factores de Transcripción / Teorema de Bayes / Células de Renshaw Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Cell Año: 2016 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Médula Espinal / Factores de Transcripción / Teorema de Bayes / Células de Renshaw Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Cell Año: 2016 Tipo del documento: Article