Bayesian Sparse Regression Analysis Documents the Diversity of Spinal Inhibitory Interneurons.
Cell
; 165(1): 220-233, 2016 Mar 24.
Article
en En
| MEDLINE
| ID: mdl-26949187
Documenting the extent of cellular diversity is a critical step in defining the functional organization of tissues and organs. To infer cell-type diversity from partial or incomplete transcription factor expression data, we devised a sparse Bayesian framework that is able to handle estimation uncertainty and can incorporate diverse cellular characteristics to optimize experimental design. Focusing on spinal V1 inhibitory interneurons, for which the spatial expression of 19 transcription factors has been mapped, we infer the existence of ~50 candidate V1 neuronal types, many of which localize in compact spatial domains in the ventral spinal cord. We have validated the existence of inferred cell types by direct experimental measurement, establishing this Bayesian framework as an effective platform for cell-type characterization in the nervous system and elsewhere.
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Médula Espinal
/
Factores de Transcripción
/
Teorema de Bayes
/
Células de Renshaw
Tipo de estudio:
Prognostic_studies
Límite:
Animals
Idioma:
En
Revista:
Cell
Año:
2016
Tipo del documento:
Article